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EXECUTIVE SUMMARY

pEvaluations of reliability, maintainability, and availability
(RMA) of large-scale complex systems have received a great deal of

attention in defense and commercial fields. In these studies, an

extremely difficult yet critical issue is effectiveness of the

*" model.

Experience in RMA anlaysis for many practical large-scale

systems has shown that more than 50% of BIT-related maitenance

Z actions are due to false alarms. This clearly implies an exces-

sive operation and support (O&S) costs. Further, to improve

system availability, one often employs redundant components (or

modules). Redundancy not only increases hardware costs but

imposes additional difficulties on analyzing system RMA as it

m increases modeling complexity, especially for large-scale systems.

Analytical models for such systems that provide an accurate

picture yet are not too complicated are very difficult to find.

Simulations, though can be made very accurate, could often be

costly. On the other hand, analytical models are very efficient

for sensitivity analysis and numerous tradeoff studies, provided

that they are accurate.

Two important ingredients must be taken into account in set-

ting up models for RMA analysis, i.e., conditions and activities

(events) of the system. In fact, for large-scale systems, numbers

of conditions and activities often become intractably large. It is

this problem that has prevented most currently available schemes

from providing accurate and effective RMA analysis.

.:



pp In this reportt we propose-.to use generalized stochastic Petri

nets (GSPN) in R14A studies. The novelty of this modeling approach

lies on the ground of the following distinctive reasons. I.-

(i) The GSPN offers a precise description of system activ-

ities and conditions while involves less complexity, comparing to

other modeling techniques. Specifically, it is an inherently

effective bookkeeping for conditions and activities.

(ii) It provides a clairvoyant insight of the key parameters

V that affect RMA analysis. Causes and results of events can be

easily tracked by executing the GSPN. ; .

(iii) It takes the advantage of the existence of concurrency

and timing of events, thus describes accurately the sequence of

events,

The report is divided into two parts. In the first part,

definitions and classifications of concurrent tasks are given.
, ...

Existing analytical models which are based on queueing networks

u(QN) are reviewed. Approximate hierarchical models based on GSPN

and QN are both presented. In the second part, analysis of GSPN

is considered. Techniques for reducing analytical complexity such

as reduction and aggregation of GSPN are introduced. Applicaitons

of such techniques to the approximate hierarchical decomposition

of stochastic Petri nets are discussed. In addition, approximate

lumping of synchronous parallel operations is considered. For

simplicity of discussions, many of these results are illustrated

via performance evaluation of computer systems. Finally, examples

L. of RMA analysis and fault detection and isolation are given using

the developed techniques.
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CHAPTER 1

I NTRODUCT ION

1.1 motivation

Advances in solid-state technology have provided us with high

* speed computer systems of ever increasing computational power. In

addition to the speed of the components, their organization may

be a limiting factor. Design efforts have therefore been geared

toward improving performance on the system level. Parallelism in

the architecture has been the most successful approach. It

includes multiple functional units, pipelining array structures,

*and multiprocessor architectures. Distributed computing and

network configuration represent parallelism on an even higher

" level. Design efforts also focus on operating system functions

3 and strategies for managing system resources, and further

improvements can yet be obtained by designing programming

languages features that match the underlying architecture. Common

to all these design efforts is the desire to evaluate perfomance

impacts prior to implementation. Even though the basic components

of such systems are inexpensive, the design costs are so high N

that an incorrect design which is undetected until late in the

development process, can have a serious negative impact on a

company. Therefore, cost effective tools for performance

. .Prediction of such system , at the early stage of design, are of

"" vital importance.

Simulation models, though could be made very accurate, are

no: cost-effective.. Therefore, they are not adequate at the

ea:ly stages of design when the design space is very large.

4 Simulations are most valuable however when detailed evaluations

-°'-
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are required at the final stage of design.

Analytical models are cost effective because they are based

Son efficient solutions to mathematical equations. However, in

order for these equations to have a tractable .solution, certain

simplifying assumptions must be made regarding the structure and

behaviour of the model. As a result, analytical models cannot

capture all the details that can be built into simulation models.

Nevertheless, an analytical model can provide insight into the

key factors affecting performance of a proposed system, and

determine the sensitivity of performance to parameter changes.

Such a model can provide guidance into the overall design of the

system and also be useful in the development of more detailed

" simulation models as the design matures.

rn 1.2 Definition of Parallel Processing:

Parallel processing, in contrast to sequential processing, is

a cost-effective means to improve performance through concurrent

- activities in the computer. Parallel processing, can formally be

defined as follows (KAr 841,

Definition : Parallel processing is an efficient form of

information processing which emphasizes the exploitation of

:oncurrent events in the computing process of a job. Concurrency

implies parallelism, simultaneouty, and pipelining. Parallel

events may occur in multiple resources during the same time

interval ; simultaneous events may occur at the same instant and

pipelined events may occur in overlapped time spans.

Concurrent events in the processing of a job are attainable

at various levels. These levels are summarized as follows

-e
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1- Task or procedure level.

2- Interinstruction level.

3- Intrainstructlon level.

The first level is conducted among procedures or tasks

(program segment). This involves the decomposition of a program

into multiple tasks which may be processed concurrently. The

second level is to exploit concurrency among multiple

o~ instructions. Data dependency analysis is often performed to

K reveal parallelism among instructions. Vectorization may be

desired among scalar operations within DO loops. Finally, in the

Sthird level, concurrent operations within each instruction can be

exploited. The highest level is often conducted algorithmically

and will be discussed further in chapter 2. The lower level is

i implemented directly by hardware.

. Parallel computers are those systems that emphasize parallel

:2 processing. Such systems are categorized as follows

I- Pipeline computers - such systems perform overlapped

computations to exploit temporal parallelism. They are more

-% attractive for vector processing, where component operations may

. be repeated many times.

2- Array Computers : an array processor is a synchronous

parallel computer with multiple arithmaetic logic unit called

. processing element (PE). The PEs are synchronized to perform the

same function in the same time.

3- Multiprocessor Systems : consist of two or more processors

of comparable capabilities that operate asynchronously. All

processors share access to common sets of memory modules, !O
• , o
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channels, and peripheral devices. Each processor has its own

local memory and private devices. The entire system is controlled

by a single operating system providing interactions between

processors and their programs as various levels.

Clearly, pipeline and array computers exploit parallelism at

the inter and intra instruction level whereas parallel processing

at the task level is adequate in a multiprocessor system. Our

" primary goal in this work is to develop analytical models for

parallel processing in a multiprocessor environment.

1.3 Analytical performance modeling

• Computer systems can be generally characterized as consisting

of a set of hardware resources (e.g. processors, channels, disks,

* etc...) and a set of tasks, or jobs, competing for and accessing

those resources. Because there are mutiple jobs competing for a

limited number of resources, queues for the resources are

inevitable and with these queues come delays. It is, then,

natural to model the system by a network of interconnected

- queues.The purpose of the model is to predict the performance of

"' the system by estimating charactaristics of the resource

u tilization, the queue lengths, and the queueing delays.

" Therefore, analytic models of computer systems have been solely

* based on queueing network (QN) models.

Research in performance modelling methodology has essentially

. been research in queueing theory. .Key advances in computer

performance modeling have also been seen as fundamental

breakthroughs in queueing theory. Queueing Theory has attained

*" new relevance because of the computer performance modelling

application. Furthermore, to a great ex:tent, the direction of
r "

°°. -. -" ° . ,° " . • .°.- ' - ...:-, : .. • • .- ;- . . • • * ; . • .-
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N queueing theory has been influenced and driven by this
!%

application (HED 841.

Figurel.l shows the famous QN model of multiprogramming

I systems, the so called central server model [BUZ 71]. It was

introduced to model contention among programs for processors and

~ 10 devices. The model is a QN consisting of a J service centers

and a population of N active jobs (the multiprogramming level).

Service center (SC) 1, represents the processor and service

center j; j=2,...,J represents an 10 device. Each job is assumed

to reside in main memory, and goes through a number of CPU-I0

cycles; it executes on the CPU, performs 1O on one of the 10

devices, and returns to the CPU, repeating this process until it

is terminated. The termination of a program and initiation of a

i new program is represented by a job re-entering service center 1

having completed service from that service center. In order to

completely define the model, the following must be specified,

1) The queueing disciplines at each one of the centers.

2) The service requirement of jobs at the centers.

3) The routing probabilities of jobs between centers.

When the above are appropriately defined, the evolution of
4.

the network can be represented by a continous time Markov chain

k- (MC), the sate of which is defined by the number of jobs at each

~ ~. SC. However, as N and J increase, the state space of this MC

becomes unmanageably large.

For a -estricted class of netwo:ks called product form -

networks [KLI 75, CH 811, several computationally efficient

: analysis algorithms have been developed [CH 81,REl 80]. The

....'-'-....... -'.'.......--............ ............... .....-................... .. . .... ,
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existence of such algorithms for a broad class of models makes

analytic queueing models an attractive tool for applied.16

performance modelling studies of computer systems. The above C]1'

central server model has been used in several performance

' prediction studies (e.g. the VM/370 performance predictor (BARD

77,783).

Product form QNs, however, are not suitable for modelling

parallel processing [CH 81, HID 841. In chapter 2, models of

*parallel computations will be discussed. A classification of

* "parallel programs based on such models will also be discussed. In

chapter 3, current analytical models of parallel processing

systems will be briefly described. In chapter 4, models of

parallel processing systems using the generalized stochastic

S petri nets (GSPN) will be presented. In chapters 5, 6, and.7, the

analysis techniques for such networks will be developed. Finally

Sin chapter 8, analytical models for systems reliability,

Smaintainability ,availability, and fault diagnosis, using GSPNs,

are considered.
4..

.
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CHAPTER 2

'MODELS OF PARALLEL PROGRAMS

. 2.1 Introduction

A parallel program consists of several cooperating concurrent

tasks that can be executed in parallel. The terms task and

, process are intended to mean a self contained portion of a

computation that once initiated can be carried out to its

completion. The completion of a task is significant in that its

occurrence can initiate the execution of another set of tasks.

The problem of defining parallel programs received much-

attention in the literature. Two approaches were followed, one is

to have explicit concurrency, by which the programmer specifies

the concurrency using certain language constructs. Conway [con63]

proposed a FORK and JOIN statements. FORK spawns a new concurrent

process, and JOIN waits for a previously created process to

t :erminate. Dijkstra (DIJ68I proposed a block structure language,

P. which defines concurrent tasks by using the constructs parbegin

and parend. For example in the following program segment, the

computations for matrices A and B are to be carried out in

parallel.
.o

begin
initialize;

parbegin
compute matrix A;
compute matrix B;

parend
C = A*B;

end

Several general purpose high level languages have

incorporated these concepts in their definitions ( PL/I, ALGOL-

* - - - - - - - - - - -



6, concurrent PASCAL, 
ADA,..).

The second approach is to have implicit Concurrency. In this

case the compiler determines what can be executed in parallel

[BAER73].

In section 2, graph models of parallel computations will be

described (KAR 66, ADAM70, CER72, BEA77, PET80, MOL811 . These

models were developed to facilate the design of parallel programs

: and deal with the issues of correctnes and efficiency. In section

3, classifications of parallel programs and algorithms will be

" discussed.

2.2 Models of Parallel Computations

2.2.1 Computation Graphs

Karp, Miller [KAR66I, and Adams (ADAM70] have developed

models for oarallel computations, in which the sequencing control

is governed by the flow of data. A directed graph was used to

. represent the computation. The nodes of the graph represent

.O :mputation steps, which can range from a single operation to a

- :omplex computational task. An edge in the graph can be thought

of as a queue of data produced by one node and waiting to be

:onsumed by another. A computation step may be initiated whenever

each edge directed into that node of the graph contains the

. 3mount of data required for that node to execute properly. The

'number of computation steps which may be executed at any given

... ~time is dynamically determined by the flow of data. Thus

* unnecessary sequencing constraints may be eliminated.

The properties of the model with which Karp was particularly

concerned are : 1- to prove that the -,,cdel is determinate i.e,

!or a given input, the program will yield a unique output

"" % o - . . ' - %" .\- . * . . *.. . .. -. ,.. .. "-, '-,'',-',c,. -::l¢. ..'i' .. 'L-" ".-'.' ..- ' * "-- c*. -~ * c - - . . . ..- - * ... . . . ..-:*. .. ... "
: ' '..''.'',. . .. ''. .'-, "" """ """ " " " " '"" .,* -" . ' -'." . ,_,,'- . "



,independent of the relative processor speeds; 2- a test to

determine whether a given computation will indeed terminate; 3- a

Sprocedure for finding the number of performances of each

computation step; and 4- the amount of temporary storage required

for the data queues associated with the branches (edges) of the

~graph, together with the conditions for the queue length to

remain bounded. The weakness in this model, however, is that

~ data-dependentconditional transfer cannot be taken into account,

since the logic at the nodes corresponds to AND-input-AND-output

logic, i.e, the computation is started when enough data exist on

all input edges, and the output data is placed on all output

edges.

The model described by Adams was an attempt to provide a

framework within which various classes of computations can be

represented. The model has been developed so that computations

reoresented within it will be determinate. The model also deals

with data structures , and a hierarchical description of the

program. Data structures were treated with generality and include

• . the hardware defined structures such as bits and words, and

* structures usually defined in a programming language such as

arrays, strings, and lists. The hierarchical program description

was achieved by being able to treat each node in the graph as

representing operation perhaps very complex, and also being able

to represent as a graph the suboperations or instructions of

which it is constructed. Moreover, data-dependent conditional

transfers can be accomodated. This is achieved by dividing the

nodes of the graph into two types, computational (r-nodes), which
I'

;,.-.,.-.', ... -. *a.*.'U*.. . * - .-. - .. . - . ., * .. . . . . . . .•'
'- "" -P%:":-';: " '/ /" '-""'-' - ,;' ,"t ,',' ,. '.-,.,.., "-, . .. -" .- • , -' "- ... .- • ,. . . .. ... . . .':i" "-,: , , -" " : ," ,"-_ , -,' --. -,". .. . -. ..-. ,. ... . .- :. :-.



. maps data on the incoming edges to data on the outgoing edges,

and computational and logical (s-nodes), which also map edge

. status as locked or unlocked, an edge with a locked status is

treated by successor nodes as empty (contains no data).

2.2.2 Control graphs

Control graphs [CER72, BEA77] are bilogic directed graphs.

The arcs contain non-negative number of tokens. Logic expressions

are assigned to the set of input arcs and to the set of output

arcs for each node in the graph. The expressions are made of

"and's" (*) and "or's" (+1. Computation is simulated by the

movement of tokens from arcs through nodes to arcs. Formally a

control graph is defined as follows:

B=(G,L,Q) , where G=(W,U) is a directed graph with

e ( IW...,w n } is the set of nodes, and U is the set of ordered

pairs or arcs uk=(wi,wj). There is a unique entry arc with wi-0.

L (L,L + ) being the logic conditions (L- is the input and L+ is

:he output logic. Thus with each node w i is associated one of the

o:dered pairs (*,+),(+,*),(+,+),(*,*). If L-*, w i is said to be

of AND-input logic (respectively OR if L-=), and similarly if

L~*, w i is said to be of AND-output logic (respectively OR).

Finally Q=(Q-,Q are the (input,output) token value

specifications which map WXU into the set of positive integers N.

The initiation of a computation modeled by w i can proceed

when L'=* (respectively L-= ) only if for each (at least one)

incident arc a there is at least Q(wi,a) tokens on it. Figure 2

s.ows an example of a control graph which could be a model for

• the following segment of a program:

,,,,'- 4 . ::,. *-- . . . * *.. . .-. .. . , . ...w - . . .
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Repeat
node 1; parbegin

begin action at node 2 .. end
begin action at node 3 .. end

parend
Until condition at node 4;

The main imputence behind control graph studies is to show

that the graphs are terminating properly, i.e.,that they

rp coresent correct and terminating programs from the flow of

control viewpoint.

2.2.3 Standard Petri Nets

In this section a simple, yet very powerful graph model of

behaviour will be presented.

e" 2.2.3.1 Petri Net Structure

F Definition 1: A Petri net is a bipartite directed graph

PN (X,A) , where

16- X P U T is a finite set of nodes with P=PI1...,Pn being a

set of places, and T=(tl,...,tm } being a set of transitions, such
.%".

,.tat P (1 T = 0

n 2- A = I U 0 is a finite set of directed arcs with

I: PXT -- * B are the input arcs, and

-' 0: TXP --*-B are the output arcs, where B = (0,1}.

Inthe sequal, a Petri Net will be referred to by the four

tuple PN = (P,T,I,O). And the functions I and 0 will be called

the input and output functions. A place Pi E P such that

.' (Pi,tj) > (O(tjpi) > 0) is called an input place (output

place) of transition tj E T.

.?igure 2.2 shows a Petri Net (?N), with places drawn as

.* =ircles and transitions drawn as bars.

z i
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P * 1PLP2,P3'P 4 ,P5rP6}

T a (tlt 2 ,t3 ,t4 ,t5 ,t6 }  ".

elements of I and 0 > 0 are"U
I (pl,tI) ,I (p 2 , t 2 ) ,I (P 3 ,t 3 ) ,

PI(p4 ,t 4 ) ,I (P 5 ,t 4 ) ,I (P6 ,t 5) I

t(p 6 ,t 6 ) ,O(tl,P 2 ),0( t l P 3 ),

O(t 2 ,P 4 ) ,O(t 3 ,P 5 ) ,O(t 4 ,P 6 )

and 0(t,1 pl).

2.2.3.2 Petri Net Marking

A marking is an assignment of tokens to places of.a PN.

Tokens can be thought to reside in the places, and the number and

position of tokens may change during the execution of a PN. The

tokens are used to define the execution of a PN.

Definition 2: A marking M of a Petri Net PN a (P,T,1,0) is a

function from the set of places to the nonnegative integers M,

i.e., M: P --- .

The marking M can also be defined as an n vector

= (m , ..... mm), where mi is the number of tokens in Pi,

- il,...,n. The definitions of a marking as a function and as a

*;ector are obviously related by M(pi) = mi .

2.2.3.3 Execution rules for Petri Nets

The execution of a PN is controlled by the distribution of

tokens in the PN places. A place holding one or more tokens is

said to be full. A PN executes by firing transitions. A

transition is firable (enabled) if all of its input places are

f ull.

:efinition 3: A transition tj T in a mrarked PM - (,T,:,O) with

* ~marking M is enabled if and only if for all pi P '

• ?-X& -;": ,4": "'"r"--" , r-'" - ",P, - " -. , ,- --.. .. . . . .- . . . . . . . . . -.
; -" : -.' ',. .... ,. . '* ' _,, ,,.'. _, "¢, ", ."". "" .". "'..'.v .'-".."."- .. . .- -. "-' -" .' .' .. 'a W.. .
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,-,w

I (pi tj) . M(pi)  .

The firing of a transition generates a new marking by

removing tokens from the input places and adding tokens to the
'a

output places.

Definition 4: A transition tj in a marked PN with marking M may

fire whenever it is enabled. Firing an enabled transition tj

results in a new marking M' defined by

M'(pi) = M(pi) - I(pitj) + O(tjpi) ,VpifP (2.2.1)

M' is said to be immediatly reachable from M.

A more general definition of a PN can be obtained by

assigning weights to the input and output directed arcs between
.

places and transition.

:.efinition 5: a Petri Net is the four tuple, PN = (P,T,I,O),

where the input and output functions I and 0 now are defined as

I PXT ----- v- N , and 0: TXP-.....-- N

- In this case, following the above definitions for enabling

"nd firing of transitions, a transition is enabled if and only if

- its input places are full, and each input place holds as many

tokens as the weight of the arc linking it to the transition.

moreover, the firing of a transition generates a new marking by

- removing tokens from the input places and adding tokens to the

cutput places according to the weights of the input and output

':-s. In a PN graph a weight label is added to each directed arc

':he weight may not be indicated if it is .).

The state of a PN is defined by its marking. The f;irn .  of a

-:2nsztion represents a :hanae in th- stat- -f - P. The state

0.a:e of a PN with n olaces i. the set of al: markinas, that ;s,

"*.."-'".a''°"'" *......... -" . -......-.-".*..*..*- .,..- , .4 .*,.~ . *.C " ."*.. ., '" * . i.*", ." - :,'-"'..;;,;''; ;, ,;;;
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4n. The change in state caused by firing a transition is defined

by a change function called the next state function f.
U

Definition 6: The next state function f: NnXT -----.. 4-N for a

P= (P,T,I,O) with marking M and for tj E T is defined if and

only if M(pi) > I (pi,t j ) for all pi 6 P (i.e.,tj is enabled in

M) • If f(M,tj) is defined, then f(M,tj) M' where M' is

defined as in (2.2.1).

Given a PN = (P,T,I,O) and an initial marking Ml, we can

execute the PN by successive transition firings. Firing a n

enabled transition tj in the initial marking produces a new

.a arking M2 = f(Ml,tj). In this new marking we can fire any new

enabled transition, say, tk, resulting in a new marking M3 -

f(M2,tk). This can continue as long as there is at least one .-Is

enabled transition in each marking. If a marking is reached where

io transition is enabled, then no transition can fire, the

function f is undefined for all transitions, and the execution

. must halt.

Two sequences result from the execution of a PN: the sequence

•~o.f markings (MI,M2,M3,....), and the sequence of transitions
which were fired (t These t sequences are related

:y the relationship f(Mktjk) = Mk+l , k = 1,2,3,....

The set of all reachable markings from the initial marking is

:1ailed the reachability set S.

"~*~~ e;inition 7: The reachability set S for a ma:ked PN = (?,T,t,,"

iwith initial marking MI, is the smallest set of markings defined

1, I) Ml 4 S, 2) if M' -S and M" = f('',t ) for some

.A transition ti is live, if for all markings M' C 3, there

•,". ••• -"- .-",-".,. ", "" '" ,,";- "*"*'-'.'" "" ." . . .; . . .." "i"" '"n
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.; exists an execution sequence which reaches a marking M" where ti

is firable. A PN is live if all its transitions are live. A PN is

said to be k-safe (k-bounded) if a place cannot hold more than k

. tokens at any time, i.e., if M(pi) < k for all p 4 P and all M V

S. A PN is said to be safe if k 1.

2.2.3.4 Modeling with Petri Nets

Petri nets were used to model various types of systems, where

places represent conditions and transitions represent events.

Hence a full place shows the holding of a condition, and when all

-onditions prior to an event are holding, then the event can

:ccur (a transition is enabled). PN models allow all possible

* States of a system to be examined, so that it can be determined

I whether sequences of events leading to undesirable conditions

exist (e.g. deadlock conditions).

In modeling parallel computations, the firing of transitions

.i a PN represents the execution of computations, while tokens in

;laces represent the conditions under which computations can take

place. A computation sequence follows the execution sequence of

-ransitions. It has been found by Gostlow (GOS71], and Peterson

(ET74,80] that the control graphs defined above and PNs

comnputation sequences were in the same theoretical class of

formal models. Figure 2.3 shows the mapping of control graphs to

-s.Therefore figure 2.2 is the equivalent PN mode! of the control

;-:ah in figure 2.1 [BEA77,MOL8]...

r

* ,o. , -.. . -*. . -. . . .. *
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Ramchandani [RAM741 has extended the standard PNs to include

a measure of time to what is called Timed PNs. The basic idea of

the extension was to simply add a label to each transition which

indicated how long that transition takes to fire (which

represents the computation time). These time values are fixed

(deterministic). Molloy [MOL82], and others, introduced what is

called Stochastic PN (SPN)4 where transition firing times are

exponentially distributed random variables. In this case

t:ansitions are characterized with their firing rates, which can

be marking (or state) dependent. This extension was significant

" in the sense that it defines a non-deterministic model that can

be analyzed by Markov chains (MC). A formal definition of the

'- N is thus the following: '.
SPN=(P,T,I,O,R), where P,T,I, and 0 are defined as above, and

R=(rl,...,rml is the set of firing rates associated with

t".ansitions.

The problem with analyzing SPNs, however, is that the number

of states of the associated MC grows very fast with the

dimensions of the graph.

Marsan et al ['AR831, have extended the SPNs to the so called

Generalized SPNs (GSPNs). GSPNs are obtained by allowing

transitions to belong to two different classes: immediate
Li

transitions and timed transitions. Immediate transitions fire in

zero time once they are enabled, while timed transitions behave

S like in SPNs. A formal definition of a GSPN is thus as for SPN,

where now the set R contains only m' elements, m' being the

--umber of timed transitions. The significance of this extension

is due to the fact that the operating sequence of a system 
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'4 comprises activities whose duration differ for orders of

magnitude. It is then conceivable to model the short activities

only from the logical point of view, whereas time is associated

. dwith the longer ones. This choice becomes particularly convenient

if by doing so the number of states of the associated MC is

':reduced, hence reducing the solution complexity. Figure 2.4 shows

an example of a GSPN (immediate transitions are drawn as double

ft bars). This model is the same as the one in Figure 2.2, except

. that times for the activities of synchronizing tasks 2 and 3 as

well as the conditional transfer at node 4 are neglected. The

analysis of the GSPN will be considered in more details later.

- 2.3. Classifications of Parallel Programs

3 Using the above models of computations, Herzog et al [HER791

classified the structure of a variety of application programs

-- into four types as follows:

1- Type- program structure(figure 2.5 (a)): The program

"" consists of a loop which may be passed several times. This loop

consists of a primary task So, upon completion of which n

+. independent concurrent tasks are spawned. A new loop may be

started if and only if all n tasks are completed. Problems of

this t ype are, algorithms for the solution of linear-algebric or

partial differential equations, optimization procedures,

* simulations including subruns for the purpose of estimating

confidence intervals, and problems of picture processing.

2- Type-2 program structure(figure 2.5(b)): Here, the program

also consists of a loop. However, the n concurrent tasks

K%-
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influence each other in some way rather than being completely

: }independent. ,"

. Tasks interact at some points called interaction points. These

points divide the tasks into stages (subtasks). At the end of ..FN
each stage a task communicates with some other tasks before the

-~~ next stage of computation is initiated. Compared to type-l, there

are not only global but also local synchronization necessary.

3- Type-3 program structure: Here the degree of parallelism

varies rather than being constant. An example is shown in figure

2.5 (e). .

4- Type-4 program structure: These program structures consist

of completely independent tasks S1 , .... ,Sn that execute

concurrently with the primary task So and terminate

P independently. Here, no synchronization is necessary since the

tasks are completely independent (figure 2.5 (d)).

Kung CKUN76, KUNSJ classified algorithms for multiprocessors

as synchronous and asynchronous. in a synchronized algorithm

"~ i (type-i and type-2), the program is decomposed into tasks which

are synchronized at interaction points. At these points tasks are

' blocked while waiting for inputs from others. The loss due to

waiting was characterized by a penalty factor defined as follows:

" Suppose that we want to synchronize K identical tasks, and that

the time taken by the ith task is a random variable t i . Since the
tasks are all identical, tl,...,tk are identically distributed

:andom variables with mean, say, t. The expected time taken until

all of the tasks are completed is the mean T of the random

variable T-max(tl,...,tk) rather than t. In general, T is larger

- " , -- - ' ".'-' - - - - ' , ." - '. . , - ." . ." "
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than t. The penalty factor for synchronizing the k tasks is then

defined as the ratio T/t. Clearly if the penalty factor is large,

then the performance of the synchronized algorithm is largely

degraded. Baudet (BAU761 has observed that, if the ti's are

identical and independent exponentially distributed random

variables, then the penalty factor for k tasks is the Kth

harmonic number Hk . Note that Hk grows like in k as k increases.

Hence synchronized algorithms should be used when there are only

* few tasks to be synchronized. Futhermore, the execution time of

the needed synchronization primitives is usually non-negligible.

Thus, it is not always advantageous to create as many concurrent

tasks as possible according to the maximal decomposition of a

problem.

Asynchronous parallel algorithms (type-4 program structure),

consist several concurrent asynchronous tasks. Communication

between these tasks is acheived through a set of global variables

or shared data. The main characteristic of these tasks is that

they never wait for the completion of others at any time, but

-- continue or terminate according to whatever information is

currently contained in the global variables. However, to insure

logic correctness, the operation on global variables are

programmed as critical sections. This asynchronous behaviour

leads to serious issues regarding the correctness and efficiency

of an algorithm. The correctness issue arises because during the

execution of algorithm operations from different tasks may

. interleave in an unpredictable manner. The effi:iency arises

because any synchronization introduced f zr :c rrectness reascns

takes extra time and also reduces concurrency. Kuno examined

.-.: - _ . .V
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various techniques for dealing with these issues, and also showed A

Iexamples for synchronous as well as asynchronous implementations .

of zero searching and iterative algorithms.

~Vol

4.

9.'r

" 2 i6

4...

a 

"-'4.

• .9.-

.9."

- p. - 4 6%"*



CHAPTER 3

CURRENT MODELS OF PARALLEL PROCESSING SYSTEMS

1  In this chapter, current analytical models proposed in the

'*Iliterature for parallel processing systems will be discussed (MAE

.-. 76,PET 75,PRI 75,TOW 75,TOW 78,BAR 79,HEI 82,HEI 83,TOM 84).

3.1 Models for CPU:IO Overlap.

The models developed in (MAE 76,PET 75,PRI 75,TOW 75,TOW 78]

were primarily intended to model CPU:IO overlap using double or

multiple buffering. This means that a program issues two or more

concurrent requests on distinct system resources. In the

following paragraph, we describe briefly the most recent of such

models developed by Towsley (TOW 78].

. The model developed in [TOW 781 is based on the central

server QN model. The assumption normally made in this model is

Z- that a job alternates between CPU and T0 activities. The job may

be thought of as repeating cycles, where each cycle consists of

6wo tasks : a task requiring the use of CPU followed by one

: .equiring the use of an 1O. In an overlap system (figure 3.1), a

cycle may consist of three tasks; CPU1 followed by the concurrent

tasks CPU 2 and 10. The approximate aggregation technique known in

.-: Q is as Norton's Theorem was used to obtain a network with two

queues; the CPU queue and an aggregate 10 queue. The aggregate

network under the overlaped job cycle in figure 1 using the exact 7.

recursive analysis of Markov models of two queue networks

developed by Herzog, Woo, and Chandy [HER 75].

The accuracy and validity of the model have been verified

. against detailed simulations. This model can also be extended to
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model overlap in CPU:CPU and IO:1O activities. However, such

concurrent tasks use only one resource each before they

synchronize and merge.

Models of systems with programs defined as a set of

concurrent tasks, where each task requires multiple accesses to

many different system resources before it either terminates

independently or communicates with other tasks, have been "*

developed in [HED 82,HED 83,TOM 84]. The remaining of this

chapter will be devoted to the description of such models.

3.2 Models for Asynchronous Tasks:

The model developed in [HED 82] does not account for any

synchronyzation between tasks. It assumes a system workload

consisting of a set of statistically identical jobs. Each job

I consists of a primary task (labeled 1) and zero or more

statistically identical secondary tasks (labeled 2) . The
b.

secondary tasks are spawned by the primary task sometime during

its execution and execute concurrently with it, competing for

systems resources. A secondary task is otherwise assumed to run

and terminate independently. An approximate multi-chain QN model

j was developed with two chains; one closed and the other open. The

closed chain models the execution of primary tasks in the system

and a specially defined node (node 0) was defined such that a

secondary task is spawned whenever a primary task enters this

node. The open chain which shares the same systems resources with

the closed chain, models the execution of secondary tasks which

compete for the system resources with the primary task, and leave

the network when they terminate. The arrival rate of the open

chain is set equal to the throughput of prinary tasks,at node a
" .oo- . .-. * . - ~. -o I
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,Of the closed chain. The arrival process of primary tasks at

, node is approximately assumed to be Poisson which is

" independent of the state of the network. Since the throughput of

the closed chain is itself a nonlinear function of the arrival

rate of the open chain, a closed form solution is not available.

An iterative algorithm was used to solve this nonlinear equation,

and the conditions for its convergence were given. The accuracy

of the approximation was studied through comparison with

simulation.

"* To illustrate the above model, consider the two-chain QN

chain shown in figure 3.2.

Let N =number of primary tasks,

I r2=arrival rate of the open chain

rijuthroughput of task j at queue i; i=0,l,2, and

" . j= , .~
5%

* vi2=mean number of visits a secondary task makes to queue

I (open chain)

ui2=utilization of server at queue i due to secondary

tasks.

• .Qij=mean queuing time of task j at queue i.

" Lij=mean queue length of task at queue i.

Sij=mean service time of task j at server i.

f=probability that a primary task will go to node 0.

P2=probability that a secondary task return to Q1 for

some more service.

At steady state,

vl 2 ml+ P 2 v 1 2 , vI2 al/(I-P 2 )

.9 .**

~9~99~9 94~ %~4** * .. ~ 5 5 5 . .5 
5
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,.,Then , r12 u r2 v 1 2

u 1 2 a r2 v12 s 12, and

A u2 2 z r2 v1 2 s22

Then using the MVA algorithm for mixed QNs [REI 801, we have,

- Qi(N) - sil[l+ L11 (N-1l)/(l-ul2 )

.. 021IN) 0 s2111 +  5211N-1)l/ll-u22) :I
rll- N/( Qll(N)+(l-f)Q 21 (N)]

rgl-f rll , and r2l-(l-f)rll

Lil(N)a ril(N) Qil(N) ; i=1,2

? cm the above,

'2(N)-rol=gN/{ [(Sll/(l-r 2 1N) v 1 2  s12)) (I+LIl (N-1))]+

[((l-f)s22/(l-r 2v1 2 s2 2 )) (l+L21 (N-i)) ]

T '.he above nonlinear equation is solved iteratively for r2, such

that r2vi2 si2 < 1 ; i-l,2

If this condition is not satisfied, then a stable solution

cannot be obtained, which means that primary tasks are able to

g generate more secondary tasks than the system can handle, and the

maan queue length of secondary tasks at at least one queue will

' be infinite.

3.3 A Model for Synchronous Tasks:

In [HED 831, another model was developed for synchronous

tasks. It assumes a workload consisting of a set of statistically

*. identical jobs. Each job consists of a primary task and a fixed

number of synchronous concurrent secondary tasks. The system

again consists of a finite number of servers including processors

and 10 devices, a particular pseudo server labeled 0, and a

"" finite number N of jobs. Each primary task of a job executes on a

I . sequence of servers and whenever it enters server 0, it splits

• . . ' . .'- - ' . _ , _ .' ' . _ .. . . ; - . , , , . . .. ... . . . . . . . . -.
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% into a fixed number (>=2) of secondary tasks. Each primary task

is the parent of its secondary tasks and later are said to be 4

' siblings. Each secondary task executes on a sequence of servers.

A secondary task is considered complete upon entering node 0. At

node 0, the secondary task must. wait until all of its siblings

have completed execution, at which time the primary task becomes

active again and the process is repeated. Syncronization between

secondary tasks is achieved by requiring all siblings to complete

execution before the job can continue processing. Two

approximations were proposed to come up with a tractable solution

for the above model. Both approximations are based on solving a

set of related multi-chain closed QNs.

The first method is based on decomposition approximation,

following the decomposition approach of Courtois [COU 77]. For

'. purposes of illustration, we restrict our discussion to the case

in which a primary task subdivides into two secondary tasks. EachOp

of the N jobs may either have its primary task (labeled 0) or

have one or both of its secondary tasks (labeled I and 2) active.

At time t , let ai(t) denote the number of active,i.e. executing,

tasks of type i, and let wi(t) denote the number of i secondary

tasks which have completed execution and are waiting for theirI3
respective sibling to complete ; i=,2. L.et a(t)-

(aO(t),al(t),a 2 (t)) and w(t)=(wl(t),w 2 (t)). Then at time t

•, a(t)+ai(t) +wi(t) for i=l,2.

If the primary and secondary tasks are relatively long in the

sense that many servers are visited before the task, then changes

in a(t) will occur frequently as compared to changes in the queue

b' .' " . ' . . , ' . '... -" -- "-. . . . . . - -.. .. -. - '
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lengths of tasks at the servers. In this case, it is reasonable

to assume that queue length distributions converge to steady

" state distributions prior to the next change in a(t). Therefore,

. for every feasible multiprogramming level(mpl) a=(a0 ,ala 2), a 1%

closed three-chain QN, with population a01alpa 2 respectively is

:. solved for the performance parameters (throughputs, utilization ,

and mean queue lengths). Let ri(a) denote the throughput of type

i tasks at node 0 when the mpl is a. The process [a(t), t>0) is

then modeled as a finite state Markov chain with state space E

and transition rate matrix Q. The state space E is a subset of

[9<ag<N, 0<al<N-a0 ,O<a 2<N-aO}. The exact definition of E however

-" is quite complex. Another assumption was made to facilitate the

state space definition by keeping track of only the mpl without

- specifying the identity of the waiting tasks. Let Pi(a) be the

probability that a type i secondary task that has just completed

finds that its sibling has also completed, when the mpl is a.

These probabilities are defined as follows,

- pl(a) S w2/al if al>.

0 if ai=0

P2 (a) - wl/a 2  if a2 >0

0 if a2=a

Then the state space E is given by,

E(a: 0< ao<.X O < al<.N-ag, V< a 2<N-a 0 , N~a 0 *al~a2 ), and the

off diagonal elements of the rate transition matrix 0 (q(a,b))

are listed below (q(a,a) - - q(a,b)).

aI
V.*
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b a transition explanation

.e (a3-l,ali+l,a2+l) r0(a) task 0 completed, tasks 1,2 spawned [I
*g: Ca,,al-l,a2) cl(a) (1-pl(a)) task 1 completed, sibling active

(ag,al,a2-.) r2(a) (1-p2(a)) task 2 completed, sibling active

S(agel,al-l,a2) rl(a) pl(a) task 1 completed, sibling waiting

i.. (aOd+,al,a2-1) r2(a) p2(a) task 2 completed, sibling waiting

,* The stationary distribution P of this Markov chain can be

obtained from solving PQa-, such that the elements of P sums to

one. The global performance parameters can then be obtained.

* e.g., the job throughput r is given by,

- r- Va 6 E P(a) rola)

The second approximate method proposed is based on the method

of complementary delays and is similar to the one proposed in
ap

(IAC 811 for simultaneous resource possession. It consists of

iteratively solving a sequence of product form (pf) QNs. The

synchronization delay experienced by a task was modeled by an

infinite server queue. The mean synchronization delays are

estimated by assuming the tasks response times to the

independent, exponentially distributed random variables. The mean

.tasks response times are obtained from the solution to the pf QN

at the previous iteration. However, the decomposition

approximation was found to be clearly superior to the above

method. The former was found to be remarkably accurate, when

compared to simulation results, predicting throughputs and device

utilizations with a mean relative error of one percent.
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4 A Model for a Task System:

Thomasian et Al (TOM 83] developed a QN model based on the

bove decomposition approximation. The model assumes that there

:".xists only one active job in the system (monoprogramming), which

is defined by a set of tasks T-[Tl,T 2 ,...,T n } with a partial

order defined on T specifying deterministic precedence

..,constraints. Only a directed acyclic graphs were considered.

from such a graph, a MC is constructed, the state of which

edefines the active task combination. A closed multi-class QN is

-. solved for each state of the MC.

6A%
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CHAPTER 4

MODELING PARALLEL PROCESSING SYSTEMS

USING THE GENERALIZED STOCHASTIC PETRI NETS

'. 4.1 Introduction
In the previous chapter current models for parallelprocessing were discussed. Such models were based on analytical

queuing networks (QNs). And due to the fact that analytical QN A.

models become intractable when modeling parallel operations,

several approximate models were developed. Even though the

accuracy of such models were found to be adequate, they were

restricted to a workload consisting of statistically identical

jobs with one type of parallelism or another. For example, the

model in section 3.2 assumes only asynchronous concurrent tasks.

In section 3.3, the model was developed for jobs with fixed

number of synchronous tasks. And in section 3.4, the model is

restricted to one active job consisting of a fixed number of

* tasks with deterministic precedence relation.

From the classification of parallel programs given in chapter

2, it is clear that the active jobs in the system may consist of

both synchronous and asynchronous tasks. Moreover, a

probabilistic model is needed to represent a wide variety of

active job structures.

In this chapter, a different analytical modeling tool,

namely, the Generalized Stochastic Petri Nets (GSPNs), is used to

model activities in a parallel processing system. Such activities

include parallel operations, synchronization, contention for

resources, and queuing.
-- r
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GSPNs are a very versatile modeling tool. The probabilistic

nature of GSPNs allows systems operations to be described in a

high level of abstraction. As indicated in chapter 2, Petri Nets

(PNs) are very powerful in modeling parallel activities and

synchronization. A distinctive feature of GSPNs, with respect to
standard PNs models, is their isomorphism with markovian models,

which allows evaluation of the performance of a system. However,

i GSPN models eliminate a major difficulty in the direct

: construction of a Markov chain, that is, its state space

definition. Also GSPN models retain much of the characteristics

of the system, therfore they provide greater insight into the

various system activities.

In section 2, a more detailed description of GSPNs will be| r.
W given. The analysis of GSPNs, however, will be deferred to the

* next chapter. In section 3, modeling parallel processing systems

IJ using GSPNs will be considered. And in section 4, an approximate

. hierarchical model for large scale systems, using both tractable

QNs and GSPNs, will be presented.

-- 4.2 Description of GSPNs

Recall the definition of a Stochastic Petri Net (SPN)

(MOL8l] , which consists of a set of places P, a set of

transitions T, the input output functions I and 0, and the set of V

" transition firing rates R.

SPN a (P,T,I,O,R),

where, P a {pl,p2,...,pn}, T = [tlt2,...,tm},

I:PXT --- i' :1 , O:TXP -- p- N , and R = trlr2,...,rm}

For a given initial marking MI, the reachability set S can be
'."

., ,, ",, ",~~ ~~.... ....... ..... .... ... .. . ..... . . .. ... .
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cbtained using the same analysis performed on standard PNs.

Once enabled, a transition ti ET takes an exponentially

Edistributed random time, with rate ri, to fire. In a GSPN

transition firing rates can be infinite. Therefore the set T is

-'. partitioned into a set of timed transitions with finite firing

rates defined in the set R, and a set of immediate transiticns.

Clearly, for any marking in S at which several timed transitions,

and one immediate transition, are enabled, the immediate

transition fires with probability one. However, if several

immediate transitions are simultaneously enabled at a marking,

.. then it is necessary to define a probability density function on

the set of enabled immediate transitions according to which the

firing immediate transition is selected. This is defined more

precisely as follows,

Definition 1 : Let Ti(M) = {til,ti2,...,tik} be the set of all

t.- enabled immediate transitions at a marking M 6 S. If k > 1, then

a probability distribution, called the switching distribution

PM(tij), j-,..,k, with ,9j=l PM(ti j) = l, is defined on the

set Ti(M) such that transition tij fires with probability

PM(tij). This set of immediate transitions together with the

associated switching distribution is called a random switch.

The reachability set S of a GSPN is a subset of the

reachability set of the associated PN, because precedence rules

introduced with the immediate transitions do not allow some V

states to be reached. For example, figure 4.1 shows a GSPN where

(tl,t2} are timed transitions , and (t3,t4} are immediate

::ansitions. Clearly a marking with two tokens in place p3

r -° .,.y.** *. . ~ .

* ~- '.-.*.*--* * ... *.**-*..*. * . .'. *
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, annot be reached. Note also that a switching distribution must

be defined on transitions t3 and t4 since they are simultaneously

Lnabled when there is a token in p3.

A crucial aspect of the definition of a GSPN is the

" identification of all random switches and the correct definition

P1of the switching distribution. This distribution, however, cannot

be clearly specified when the set Ti contains independent

-transitions. Since it represents possibly unclear relation

b-.between fast independent events in a system. In the following we

restrict our discussion on immediate transitions to address this

LO issue.

-;-efinition 2: a set of transitions are said to be independent if

and only if they do not share any input place. Let Pin = ( pk /

z(Pk,ti) > 0 } be the set of input places of transition ti E T.

, Then transitions ti,tj E T are independent if and only if,

" Pin(ti)t Pin(tj) = 0. Otherwise they are said to be dependent.

-~For example consider the portion of a GSPN shown in figure

4.1 (b). Assume tl fires first, so that a token moves to place

"3 p , thus enabling the immediate transitions t4 and t5. Since

t, :hese transitions are dependent, the switching distribution can

.-e easily specified because it depends on some local behaviour of

% the system. Let P(t4) and P(t5) be the switching distribution

,..defined on [t4,t5}. Similarly, if t2 fires first, let P(t6) and"I

.(t7) be the distribution defined on {t6,t7}. Now if t3 fires

first, a token is placed in both pl and p2, thus enabling the

four immediate transitions t4, t5, t6, and t7. However, since

." transitions in (t4,t5} and [t6,t7} are independent , the

switching distribution on (t4,tS,t6,t7} accounts for possibly
""

',',L% . -. _
,

. o " 4 ,1 • . .. ... . • . . .• -.. .. . . . . . .
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unclear relation between two separate parts of ths system.

" It is implicitly assumed in the above definition of a random

switch that no two transitions can fire simultaneously even if
P1

.hey are independent. In the sequal we relaxe this assumption to

-'find a more general definition of the switching disribution.

- Definition 3: a set of enabled transitions are said to be

mutually exclusive , i.e., only one of them can fire , if they

are dependent.

Definition 4: for each set Tj (tjl,tj2,..,tjr} of mutually

exclusive immediate transitions, definea switching probability

distribution Pd(tjk), k - 1,2,..r, such that Pd(tjk) - 1.

For example figure 4.1 (c) shows a set of dependent

-. transitions (tl,t2,t3,t4) with a common input place p2. In a

i marking with a token in both pl and p2, tl and t2 are mutually

exclusive and a switching distribution must be specified on the

-" subset {tl,t2}. Similarly, for a marking where p1, p2, and p3 are

N full, a switching distribution must be defined on the set

"~(. l,t2,t3,t }.

Now let H(M) be the set of all enabled immediate transitions

at a marking M. H(M) can be partitioned into several subsets of

"" mutually exclusive transitions Qi(M), i=l,..,z, such that for any

;- tuE Qi(M) and tv 6 Qj(M), i#j, tu and tv are independent. Let

?dQi(tij) be the local switching distribution defined on the set

" of mutually exclusive transitions Qi(M). Assuming that.

" independent transitions can fire simultaneously, let EM =

{EI,E2,..,EJ} be the event space at marking M, where Ei,

il,...,z, are the events when only one transition in Qi(M)

r fires, Ei, inz+l,...,!/(2!*(z-2),) are the events when exactly

71
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-i.to transitions fire simultaneously, and EJ, J-(2z..l), is the .

a*ient when z transitions fire. Also let P(Ei) be the probability,4

fevent Ei, ja3.0***J, such that Jul )z1.Ths

;.robabilities can be defined by the system analyst if the

relations between the parts of the system represented by the sets

:f transitions Qi(M) is clear. If this is not possible, the above

events can be assumed to be equally likely ,and in this case

P(Ei) -1/(2z-1

*The global switching distribution of the set H(M) can then

-e defined as follows,

C.

PM(til,ti2,...,tik) aP(Ek) .Pd
0 jl(til) .Pd~j

2 (ti2)

0PdQjk(tik)

kul, .... (2 z-1)

where PM(tiljti 2I...*,tik) is the probability that the set of

:ransitions (til,ti2,..,tik)- will simultaneously fire, Ek is the

* event that k transitions one from each Qjs, s=1,..,k, will fire,

-3nd PdQij(tij) is the probability that transition tij 6Qij will

fire.

4.3 Modeling Parallel Processing Systems Using GSPNs

* Because of the nature of parallel processing systems, a model

zf such systems has to handle such phenomena as Contention for

* nuiriple resources, queueing, parallel and sequential operations.

As demonstrated earlier, .unlike petri nets, analytical queueing

nletwo-.k models are not adequate for modeling parallel

^-Pera t io ns. However, they are very powerful in modeling

h rcontention fc: resources. In this section, we demonstrate by

,N



*,),xamples that GSPNs can also be used to model contention for

a:Atiple resources.

Molloy [MOL81] addressed queuing issues in Stochastic Petri

1_Nets (SPNs). Where places are viewed as queues, and transitions

:cdel arrival and departure events. For example consider the SPN

-"shown in figure 4.2 (a). This SPN represents a service center

. ith a stream of customers arriving with an exponentially

!istributed inter-arrival time with a state dependent rate rl(m),

and exponentially distributed service time with state dependent

-:ate r2(m), where m is the number of customers in the center

number of tokens in pl).

If rl(m) and r2(m) are constants, i.e., they do not depend on

:, then the SPN represents an M/M/l queue. for an M/M/k queue,

:i(m) is again constant, and r2(m) is given by,

r2(m) = m .r2 0 < m < k

a k. r2 ,m > k

• Due to the memoryless property of the exponential

• -istribution, and since we have only one class of customer, the

above is adequate for both first-come first-served (vCFS) and

Last-come first-served (LCFS) queuing disciplines. If the queuing

d scipline is processor sharing (PS), then r2(m) will be given
by,".

r2(m) m . r2 ,O < m <k

k.r2/m "k

It is not possible, however, to model service centers with

mutiple classes of customers and fixed priority or FCFS queuing

* ' -** . . . . . . . . . ,.. ' .. -,' . " . . . -. , -. . . . . -
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..disciplines by SPNs. Since in this case we must take into account

".he order of customers waiting for service. As shown in the

linrevious Chapter, this class of service centers is very important

in models of parallel processing systems. In the sequel we will

show that this class of service centers can be modeled by GSPNs.

* Figure 4.2 (b) shows a GSPN that represents a service center

with J classes of customers. A token in pli, i=l,..,J, represents

i class i customer has arrived and is waiting for service. A

t token in p2i, i=l,...,J, represents that a type i customer is
t-.

:eing served. And tokens in ps represent the number of available

servers or resources. Again the inter-arrival (service) time of

class i customers is exponentially distributed with rate rli

- (t2i) .

The queuing discipline is assumed to be of a fixed priority,

-with class I customers have the highest priority and class J

c* :ustomers have the lowest priority. When a resource becomes

* -vailable, and if there are customers waiting, several immediate

t:ansitions are simultaneously enabled. And their switching

W* distribution is defined such that the transition that corresponds

t to the highest priority class will fire with probability one.

Figure 4.2 (c) shows a GSPN model of a service center with J

customer classes and FCFS queuing discipline. The queue portion

oh the model is divided into s stages where customers are ordered

according to their arrival. It is assumed in this model that the

maximum number of customers that can exist in the center is

(s+k), where k is the number of available resources (number of

tokens in ps)

r The following example demonstrates the ability of GSPNsto
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' m iodel sequential and synchronized parallel operation, and

contention for multiple resources.

-xample 4.1 : Consider a system consisting of two service

centers. Service center one (SCI) consists of an infinite number

of servers (e.g. IS queue). Service center two (SC2) consists of

two resources with FCFS scheduling policy. Jobs in the system

consist of either a sequential task (labeled 1), or a sequential.
~ task followed by two synchronous parallel tasks (labeled 2 and

3). The GSPN shown in figure 4.3 models the activities in such

system when there is only one job in the system at a time. A

" token in places 1,2 and 3 indicates that a type i task ; i-1,2,3

is being serviced at SCI. Also a token in places 10, 11 and 12

indicates that a type i task is being serviced at SC2 and a token

in places 14,15 and 16 indicates that task i has completed. When

* a job is completed we assume that a similar one immediatly enters

I.. the system. The rates r i of timed transitions t i ; iul,2,...,6 ,

q are given by,

ri  mi/sil ; i-l,2,3

= i/Sk2 ; k=l,2,3 , i=4,5,6 ,respectively

where m i is the number of tokens in place i, and s = mean

service time of type i task at SCj ; i1,2,3 , jl,2.

• .Also, the branching probabilities (of immediate transitions) are

defined as follows,

Pijk = probability that a type i task will visit SCk upon

completing service at SCj , i=1,2,3 , j,k=l,2, and

Pijo a probability that a type i task will terminate upon

visiting SCj ; i=1,2,3 , j=l,2.

;, U
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Also, p' is the probability that a type I task, upon terminating,

will spawn two synchronous tasks.

Transition t16 models the synchronization operation between

the two parallel tasks and is enabled when both tasks have

** completed service. When the multiprogramming level is greater

than one, i.e., there are several jobs that are being processed

*simultaneously in the system, synchronization must be acheived

r only between parallel tasks that belong to the same job.

Therefore we must find a way to identify such tasks. This can be

done by using colored tokens. In this case the initial marking is

defined by the number of tokens in pl and each token is given a

i .distinct color. The state or marking of the colored GSPN is

defined by the number and color of tokens in each place, i.e.,

the current marking M is given by,

M aml,m2,. .. ,mn) , and

. mi {mil,mi2,..mik}

, where mij is the number of tokens of color j in place pi. In this

case a transition is enabled if there exists a token of the same

.. color in each one of its input places. And it fires by removing

: these tokens and depositing a token of the same color in each one

of its output places. For example transition t16 is enabled when

there is a token of the same color in places 15 anf 16, and its

firing resembles the synchronization of two parallel tasks that

belong to the same job. Tokens in place 13, however, are not

colored since they represent available resources at SC2. ..

Therefore, transition t13 is enabled when there is a colored

token in place 7, and a token in 13, and fires by taking these

tokens and depositing a token in 10 with the same color as the

" a% .. .. ,, .oft.-. O o . . . .*. , a

ft;." -. .'..' .'v " ... .. "* .".*. . -. - ". . . - . . . ".. -t.- . .
.. .."* ' -"%' ." " -a a " t.'ftt ''' *

,
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. enabling token in 7. And transition t4 fires by taking a token

from place 10 and depositing one with the same color in 17, and a

noncolored one in 13.

It can be easily seen that the GSPN model is adequate for

* explicitly representing all key activities in a parallel

processing system. However, for large scale systems with large

s- number of service centers, and a workload with a large number of

. different types of tasks, the model becomes quite complex. The

complexity of the model arises not only from the explicit

Srepresentation of the various activities by places and

transitions, but also due to the fact that the number of states

(markings) will be prohibitively large. Therefore, the analysis

P of the model will be very complex. In the next section, an

approximate hierarchical model, which is adequate for large scale

systems, is presented.

4.4 An Approximate Hierarchical Model

K. In this section a hierachical model will be discussed. It

employs both QNs and GSPNs. QNs are used to represent queuing and

contention for multiple resources. And GSPNs are used to

-.- represent concurrent activities.

i
The model is based on multiple time scale decomposition. The

time behaviour of the system can be divided in two time scales, a

fast time scale, and a slow time scale. The fast time scale

ccmprises activities describing the contention or execution of

tasks at a certain resource in the system. And the slow time

scale comprises activities describing the execution of tasks in

A4°
- "" °'Q'

°
" "a ". '. e- " 

o " "
" 

3
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the system as a whole. The motivation behind the above assumption

p comes from the fact that, tasks in a system need several CPU-1O

processing cycles before they terminate. Therefore, the soujorn

time of a task in the system is much larger than the time needed

by that task to execute at one of the resources during a cycle.

4.4.1 Model Discription

The model consists of two hierachical levels. At the lower ....

level, the parallel processing system under consideration is

'. represented by a multi-chain closed queuing network (QN). The

system consists of a finite number K of servers including

processors and 10 devices, a particular pseudoserver labled 0,

and a finite number of jobs N (the multiprogramming level). A job

consists of several synchronous and asynchronous tasks. The
pseudoserver, server 0, is a node in the network defined to

accomodate changes in the number of tasks being processed in the

* system.

' Let L denote the total number of the different types

(statistically non-identical) tasks of the N jobs. The model

L: assumes the availability of the routing behaviour as well as the

service time distributions of the different types of tasks. Let

Pijk denote the probability that a type i task goes to server k"

after visiting sever j, and let $ij denote the mean service time :. -'

of type i task at server j. In order to make the model

computationally feasible, we assume that the QN have a product

form solution for a fixed number of the different types of tasks.

Therefore, the queuing disciplines at each of the K servers are

restricted to either, FCFS, processor sharing (PS), infinite

server (IS), or last-come-f irs t-served preemptive resume

~~~............%' . ., .. . . -..-.... . ....-.................. -.
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(LCFSPR). The service times may have arbitrary distributions,

p except at FCFS servers in which case the service times of all

tasks are exponentially distributed with a common mean, i.e., Sij

is independent of i if server j is a FCFS queue. These are the

standard assumptions for a queuing network to have a product form

Sasolution [CHA77]. The QN can then be analyzed by the fast and

simple Mean Value Analysis (MVA) algorithm of Reiser and

Lavenberg [REI8]. However, an approximate analysis of some non-

- product form QN's, for example when a FCFS queue have

non-exponential service time distribution, can be obtained using

the extended MVA algorithm developed by Bard [BAR791.

At the higher level of the hierarchy, the behaviour or

structure of jobs is modeled by means of a GSPN. In the GSPN,

tokens represent tasks, places define the type and state of tasks

in the QN (e.g., a task can be active, i.e., being processed, or

is completed), and transitions resemble the activities of

, " spawning, synchronization, or execution of tasks. An enabled

timed transition resembles that a task is being processed in the

system, and it fires when the task is completed. Therefore, the

• state (marking) of the GSPN defines the number of the different

- types of tasks competing for resources in the QN.

The QN is solved for each state M of the ZSPN with different

. number of active tasks to determine the firing rates of enabled

transitions. The rate of transition ti (ri(M)) is the throughout

of type i tasks at node 0 of the QN, 3 state M. Here we also

assume that the times between task arri;als at node 0 (task

completions) are exponentially distributed. The correctness of

r I..L.-.1:.2



this assumption was proved by Courtios and Kleison [COU77,KEIL78].

;The local performance parameters such as the steady state p

:utilization uj(M), and mean queue length lj(M) of server j is

-also evaluated at each state M.

The GSPN is then solved for the steady state probability

distribution. The global performance parameters are obtained from

.'local ones as follows:

Ri , . S  r i(M) . PI(M) , = , . ,

U Uj MiS uj (M) . 2(M) , LjI'MS lj (M) . 2(M) , K

where, P(M) (M S), is the steady state probability distribution

,and S is the state space or reachability set of the GSPN. Also

Ri is the throughput of type i task at node 0, Uj and Lj are the

-lobal utilization and mean queue length of server j

r respectively.

To further illustrate the above model, let us consider the

following two examples:

Example 4.3: Asynchronous tasks.

* Let us consider the case where there are N statistically

identical (s.i.) jobs in the system. Each job consists of a

Primary task (type 0), and one or more s.i. asynchronous (type 1)

tasks initiated one at a time by the primary task, and execute

;. concurrently with it and terminate independently. Also consider ..

the central server QN model shown in figure 4.4. The model

• consists of a processor queue, and an 10 queue. The processor

queue is assumed to be a single server queue with a PS queuing
%

discipline, and the 1O queue is single server queues with FCFS

:. queuing discipline. Figure 4.5 shows the SPN model of jobs

behaviour (with N=2). The state of the SPN is M=(N,k), where N is

"*/ .2 . ... ,... . "... .." '. .'..".".V .---. . . . .. . ' ". . - . . . ."..'.- '... -." • -



the number of primary tasks (tokens in pl), and k is the number

of spawned secondary tasks (tokens in P2 ). The firing of

-transition tg resembles the initiation of a secondary task, where

a token is placed in P 2. The firing of tj resembles the

termination of a secondary task, where a token is taken out of

"7 P2. The firing rates of these transitions rg(N,k) and rl(N,k) are I
the throughputs of N4 type 0 and k type 1 tasks at node 0 of the

QN, respectively. The corresponding M.C of the SPN is shown in

figure 4.6. This M.C obeys local balance, i.e., at steady state,

the balance equations are,

r0 (2,k-l).P(k-l) = rll2,k).P(k) k>0,

and with k P(k)-l, the steady state probability distribution

* is then, A-'

P(k) = P(O). T0  r0 (2,i)/rl(2,i+l) k>0, and

P(0) 1 / (0 k = i r (2,i)/rl(2,i~l)

The global performance parameters are evaluated as follows:

Rj. :iki ri(2,k) . 2(k) i=0,1,

= E5 % uj (2,k) . P(k), and = .= qj(2,k).P(k)

j=l,2,...,n+l

The existence of the above solution can be easily proved

since r0 (2,k) /rl(2,k) < 1 for all k>2. Therefore the term

": ro(2,i)/rl(2,i+l) rapidly tends to zero as k increases, and

the above infinite sum can be accuratly approximated by taking a

finite number of terms.

Example 4.4: Synchronous tasks.

Let us consider the case where a primary task subdivides into

exactly two secondary (type 1, and type 2) synchronous concurrent

tasks. When a secondary task completes, it must wait until its
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sibling has completed, at which time the primary task becomes

I active again and the process is repeated. The GSPN shown in

O figure 4.7 resembles this behaviour (N=1). The number of tokens

in P2 and P3 are equal to the number of active type 1 and type 2

So' tasks respectively. The number of tokens in P4 and P5 are the

.' number of completed tasks that are waiting for their siblings.

The reachability set of the GSPN is shown in table 4.1. And the

corresponding MC is shown in figure 4.8. As mentioned in the

, previous section, if N > 1, the tokens are colored to acheive

proper synchronization between the secondary tasks. Therefore,

each token defined initially in p, should have a distinct color.

Now consider the simple three chain QN model shown in figure

4.9 Both the processor and 10 queues are two server queues. Since

with N=l there will be a most two tasks in the system at any

given time, the queues are effectively !S (no contention).

Let the mean service time of the above tasks be,

SSil = Si2 = I sec., iug,l,2. Also the routing probabilities

Pilg = i 0,1,2. Since the mean service times for a task at

_ both queues are equal, the probability of finding at least one

task of a certain type at any one of the queues is 1/2. Therefore

the throughputs of tasks at node 0 are,

ro(l) 2 1/2 /S1 g p/2 = ri(j) , i-1 , and j-2,3,4.

The rate transition matrix of the above M.C. is

-/2 1/2 0 0

A p 0 -1 1/2 1/2

1/2 0 -1/2 0

1 1/2 0 0 -1/2
mb
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pp p1 p2 p3 p4 p5

to1 1 0 0 00
2 0 1 1 0 0

33 2 0 1 1 0.:- 3 0 0 0

4 0 1 0 0 1

p4 P5 5 0 0 0 1 1

K . Table 4I

Figure 4.7

Ill r2(2)-:

"'" r1(2) "

Node 0 :-
Figure 4.3
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Figure 4.9
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Using the above matrix, the steady state probability

distribution of the GSPN can be evaluated, and the global

performance parameters can be obtained as indicated earlier.

4.4.2. Theoretical Verification

The development of the above hierarchical model is based on

the concept hierarchical aggregation of continuous-time discrete-

state Markov processes. The theory presented here was developed

;.n two recent papers by Coderch et al [COD83a,bI, which

g.eneralizes the earlier work on decomposition of Markov chains

proposed by Courtios [COU77].

Let {XP(t), t>=0} be a finite state markov process (FSMP)

with rare transitions. The transition probability matrix of this

process is PP(t) = exp{A(p)t}, where

A(p) =i=0 pA (3.1) p.

pi ( ),.

is the matrix of transition rates, and p [0,Po] is a small

parameter modeling rare transitions in XP(t). This process can be

. :onsidered to be a perturbed version of the FSMP X°(t), where

- these rare transitions are neglected (p=O).

. - :efinition: XP(t) is said to be regularly perturbed if

lipP supt>-01f(Pt) - Powtif 3

otherwise, the perturbation is singular. In which case

rank A(p) > rank AZg, or equivalently, the number of ergcdic

:lasses at of XP(t) is less than that of X 0 ( t).

If XP(t) is a singularly perturbed FSMP, then

:) the limits

im_ p(t/Pk) = Pk() , 2

are all well defined and determine a finite sequence of (in

- " "., . " . . - * , ' " . - , - " . , . . - .
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general stochastically discontinuous) FSMP's Xk(t), k=l,..,m with

transition probability matrix Pk(t) (refer to section 2 of the

, next chapter for the detailed definition of stochastically

discontinuous FSMP's);

:" ii) the limit processes Xk(t) can be aggregated to produce a

" "hierarchy of simplified, approximate models of XP(t), each of

which is a FSMP valid at a certain time scale t/pk describing i-

Schanges in XP(t] at a distinct level of detail; and

iii) the collection of the aggregated models Xk'(t), k=l,...,m

can then be combined to construct an asymptotic approximation of

I XP(t) uniformally valid for t>=0.

The above can be expressed by the following theorem:

- Theorem I: Let XP(t) be a singularly perturbed stochastically

continuous FSMP taking values in Ef=[1,2,..,nO}, with transition

probability matrix P(t) = exp{A(p)t}, and infinitismal generator

A(p) of the form (3.1), then

i) let Ak and Zk be respectively the infinitismal generator and

the ergodic projection at zero of some FSM? Xk(t) taking values
,. in E ,

limp- 0 supt P d,T] JJP(t/ p k) - Zk exp{Akt} =

for all d>G, and T<t and k=1,..,m ( T can be taken equal to w for

kzm). Furthermore, let Zk= Vk.Uk be the canonical product

decomposition of Zk (see proposition 2.1 of the next chapter)

Then,

P(t) = exp[A(p)t} = expf.300t} + Vkkl (Vkexp{Akpkt}Uk - Zk)+O(l)

uniformally for t>=0, where Ak' = UkAkVk is the generator of a

.~ ~. . ."- ,b2 .'f ., - .. *. ., *, . ..- . * ,',_ ..",. *:.. .. . . ." - - - ." '- ,- - - - - -" -" ."- ,



FSMP Xk'(t) taking values in Ek={l,..,n k } and

P::f:-0D8:] nk = n; -: rank Ai and a

The matrices Ak ' and Zk are evaluated for k=0,l,2, as

v fol lows :

Al' = U1 Al Vl = U1 Ag 1 V1

A2' U2 A2 V 2 = U 2 (A02 - A0i A4 Ag1 ) V 2

where A# = (Agg + Zl) - - Z
and Z1 = limt_.*o o exp{A 0 t'i , or-is the solution of

A1 Z a , 1  1 where j+T = 11 . .]"" A Z1  ,with Z,

Z limt_. o00 Z1 exp{Alt} Vl. (limt.poo exp(A 1 t ) U1

" or can be evaluated from

3 Al' Z1 ' =0 ,with ZI ' 1+  1+ and then

Z2  - 11. ZI ' U1

For the expressions for higher order models refer to I
(COD83b]. Also Delebeque (DELS31 developed a recursive algorithm

to compute the above aggregated models Ak'-

Example 4.5:

To illustrate the above theory, consider the simple FSMP XP(t) "

the state rate transition diagram of which is shown in figure

. 4.10. With the transition rate p between states 2 and 3 is much

less than one, the process will spend a random amount of time

switching between states 1 and 2 and eventually it will get

trapped in 3. It is clear that we can identify phenomena occuring

at two time scales. At the "fast" time scale only transitions

*. between I and 2 occur and X°(t) is a good model for that. At the

1"slow" time scale (t/p) a sample function of the process in the V

• _ . . ..: .. -.,-... .. ..-.. ... . .... , - ... . . . . . . .. . -. . . . ... . . .',
• .. .." "% ' %

°'
.. . ." " t , '" " " "" " " 

"
" ' ." ..". " " "' "" "" " " " " '' " " ".2 . ".' ,' .. '-€ ,-- . -'" " ,"" " "". .. • "
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.::it o-)-O is shown in figure 4.11, which is denoted by Xl(t). It

.3 clear that this function has an infinite number of

:.s:ontinuities on a finite time interval. The distribution of

. "e random variable describing the length of this in -rval

::.Werges to the exponential distribution [KE178]. This process

- :In then be approximately aggregated (figure 4.12). The rate

::nsition matrix of the aggregated model is obtained as follows:
m

Let the rate transition matrix of XP(t) be expressed as,

1- 1 01 'an

(p) = A0 0 + p A0 1 , AGO= -1 0.
-0 00

" =  - il , then solving for the steady state
10 0 0J

.:rzability matrix Z, of the process XW(t),

.g Z I = 0 with Z 1  I , we have

1/2 1/2 0 1 0 [/2 1/2 0"

Zl= 1/2 1/2 / V2 U"
01 L 0 1J

::en using the above expressions,

- - [1/2 1/21
. = U U1 An a Vi "

• , 0 0 ::

.. so notice that rank A0 0  rank A' = rank A(p), and therefore

ythleorm 3.1,

exp{A(p)t) exp(Aggt} + V1 exp(A1 p t} Ul  ZI + o(l)

:r small t explAl p t} I , exp{A(p)t} = exp(Aaot} , and

4-:- large t exp[A0 0 t} = Z, exp[A(p)t) = V1 exp(Alpt} U1

To show the application of the above theory to the

• -erarchical model described in previous section, let us consider

exanole 4.4 of that section. And let us analyze the exact

S : ution of the QN in figure 4.9 under the specified job

. ... . . . .
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4 behaviour using the Markov chain model. And assuming that the

service times distributions for all of the three types of tasks N.

in the network are exponential. The M.C. model of the QN in

•j figure 4.9 is shown in figure 4.13. The state is characterized by

a 2X3 matrix with raws representing queues and columns I
representing the task types.

?Sor example at state I, a type 0 task is being serviced at queue

I (the processors queue), while at state 2 it is being serviced

at the 1O queue. The transition rate from state 1 to state 2 is

* equal to 1/Sgl . (1-Pglg) a I.- where Solul and Pgg 41P

The limit as p-- 0 can be interpreted as that the average

number of cycles that a task makes through the processor queue

i and the 10 queue tends to infinity. If the tasks are large, i.e.,,

they need several cycles of CPU 1O procesing (p<<) before they

terminate (branch to node 3), the above M.C. can be analyzed

- using the theory described above. Let the rate transition matrix

of this of this M.C. be expressed as

A 0 01
' " 0, 0

A(p) U Aj g p A01 , where Ag 0 0 C"1 9

1 "-2 0 1

A" B C" 0 " 2 [ and.

0 l1 0 a 0 0 0 a 0

.0 0, 0 1 01 0 0
a 0 0 0 0 1 a 0 0 1

. . 0 0 a . 0 1 0 01 0 0 0 0 a 0 -t 0 0
a 0 0 00 00000

a 0 0 a 0 a0 0

0- 3 0000 1
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It can be easily seen that the M.C. is decomposed into four

ergodic classes at zero (i.e., at puO), with transitions

represented in the figure by solid lines as follows: J*

Ela{l,2} , E2-{3,4,5,61 , E3 {7,81 , and E4 ={9,1 ).

These classes partition the M.C. into four chains with rate

transition matrices given by A", B", C", and D" respectively. In

"chain 1 the type 0 task is being processed in the network in

either the processor queue or the 10 queue, in chain 2 both type

I and type 2 tasks are being processed, in chain 3 the type 2

task only is being processed (type 1 has terminated first), and

in chain 4 the type 1 task is being processed (type 2 has

terminated first). The steady state probability matrix ZI can be

evaluated by solving each one of these chains separatly for the

. steady state probability matrices Zi, i-l,2,3,4, which are

/2 1/2-
=/2 i-1,3,4 , and Z2 " =zjl, zi.- 1/4L ./2 1/2.

, i,j'1,2,3,4

.-. Z1 ,.

Then, Z1 = Z3" V V U

~Z4 ".-

7-1/2 1/2 9[0 -1 1/2 1/
and A 1 = U1 Aoi - 1/2 0 -1,2 , which is

the rate transition matrix of the aggrecated M.C. shown in fi-ure

4.14. This M.C. is the same as theone in figure4.3, whi:h

corresponds to the GSPN model in figure 4.7. Therefore, the GSPN

. - . . .. .
-=-' "--- ._ .t . . -. - . . . " .' . . ... . ' . '- . ' . . . . • . - ...

• --" " " ' " -' "' " " "._ ._ , \ v ' ." .. , ; ., - . , . . .- , • " ". " " " ". ." -
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'2b..

models the system from a higher level of detail defining the

number of the different types of active tasks in the system. And

the corresponding M.C. model of the GSPN is the aggregated model

scale (the time required to process a whole task). While ;t the

fast time scale (the time required to process a portion of the

task at one of the servers, i.e., during one cycle in the system)

- the QN models the behaviour of the process at a lower level of

detail, i.e., the types of servers required and the mean service

time at each server per visit.

The above example demonstrates that the approximate

a hierarchical model proposed in the previous section is based on

the approximate hierarchical aggregation of the exact M.C. model.

Nnd the basic assumption is that jobs consists of large tasks

,i.e., tasks that require multiple accesses to many different

system resources before they terminate.

"* 4.4.3 Validation Examples

In this section, the accuracy of the above model is validated

", by comparison to discrete event simulation. Two examples of

systems with asynchronous tasks and synchronous-asynchronous

concurrent tasks are considered. .

In the first example, the system described in example 4.3

,with jobs consisting of asynchronous tasks, is considered. This

system was simulated by a simulation p-ogram writen in SIMSCRIPT

rr.S. The analytical results, obtained from the hierarchical 6"

model as described in example 4.3, were found to be very accurate

compared to the simulation results for a variety of models. Table
*.. . .*. . . *..*. . . ..-* , . .. . . .. .,.' .% . ;.-. ..-. .. . . . .. .
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4.2 shows the parameter settings for 10 different models (figure

5 4.4). These parameters were chosen such that the 10 server
(server 2) or the CPU server (server 1), or both are heavily

utiltized. This corresponds to cases 1-4, cases 6-9, and cases 5

and 10, respectively. The multiprogramming level N is equal to 5

in all cases. For simplicity, The service time distributions of

* . both tasks at the 10 server are assumed to be exponential with

the same mean S2 so that the underlying QN will have a product

form solution. The following parameters are common to all cases,

SI1  0.00001 , and S2 a 0.002

Model number polo pl0 Sol

1 0.1 0.1 0.0001

2 0.3 0.1 0.00013 0.5 0.1 0.0001 H

4 0.1 0.3 0.0001

5 0.1 0.3 0.0001

6 0.1 0.1 0.001

7 0.1 0.3 0.001

8 0.1 0.5 0.001

9 0.3 0.1 0.00

100.5 0.1 0.001

---------------------------------------------------------------

Table 4.2 Parameter settings for central server models.

Table 4.3 shows the results obtained for the throughputs of

" tasks at the CPU, and servers utili:ation. The simulation results

are shown between .arenthesis followed by the relative percentage

error between the analytical and simulation results.

7 " ..... "-;, . .. . ......... 4
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MODEL 10. THROUGHPUTS AT CPU OF TASK UTILIZATION
TYPE 0 1CU1

1. 2777 2777 .31 .999
(2783),.21 (2780),.1 (.31) (1.00)

2 1470 4417 .19 1.0
N (1475) ,.33 (4413) 804 (.21) ,1.8 (1.93)

3 1003 4998 .15 1.0
(1007),.29 (5007),.17 (.17),11 (1.0)

4 4379 1459 .45 .99
(4399),.45 (1460),.06 (.44),2.2 (.99)

5 4926 985 .49 .98
(4951),.5 (988),.35 (.50),2 (.99), 1

6 989.7 989.7 1.0 .36
(998.5),.88 (981.5),.83 (.99),]. (.36)

7 996 332.2 .99 .23
(1003),.7 (332.1),.03 (.99) (.23)

8 997 199.6 1.0 .20
(102),.5 (200.1),.2 (.97),3 (.20)

9 969.7 2909 1.0 .66
- (981.7)1.2 (2912),.1 (.99),l (.66)

10 935.9 4679 .98 .94
(951.9),11.6 (4734),1.1 (.98) (.94)

-------------------------------------------------------------- A

Table 4.3. Comparison between analytical and simulation results.

* Notice that the analytical results are still very accurate

even when one of the servers is saturated (190% utili:ation).

This was not the case in the model developed in [HED 82] which is

mainly suitable for balanced systems.

Figure 4.15 shows the throughput of primary tasks as a

function of the mutliprogramming level N from the analytical and

.......... _,-........ ... ..,.,,° .,... . . . ,
-p %**' * .* **..,**** ,

.>*.*p- " $ " --. " ,.,.' *." .." .',..',,• - - ''_._., .q"' "• ,.',,_ .'., '.'".
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simulation models. And figure 4.16 shows the the CPU utilization

as a function of N. The parameters for these figures are as "
follows,_

Sol a .00, S11  .001,$S2 a . i001, Po0 .05, and Plil .4

Example 4.7: Consider the QNI in figure 4.17 with a CPU queue at

node 1, and an IO queue at node 2. Let us assume again for

simplicity that the CPU queue is a single server queue with "

processor sharing queueing discipline, and exponentially

distributed service times with mean Sil for type i tasks. The 10

queue is also a single server queue with FCFS queueing

discipline, and exponentially distributed service times with

common mean for all types of tasks, i.e., Si 2 is independent of

Ii. This ON will have a product form solution for a specific

number of tasks.

Jobs behaviour is modeled by the GSPN in figure 4.18 ,

where a primary task may with probability P(2) subdivide into two

synchronous (type I and type 2) tasks, or with probability (1-

P(2)) spawn an asynchronous task (type 3), which executes

concurrently with it and terminates independently. The markovian

model of this GSPN is complicated to evaluate. But using the
-...

concept of hierarchical decomposition on the GSPN the above

system can be easily solved. If we assume that the initiation of

synchronous tasks is more frequent than asynchronous ones (?(2) >

0.5), and that asynchronous tasks take longer time to execute

than synchronous ones. Then, while a certain number of

asynchronous tasks are executing in the system, several

synchronous ones will start and terminate for some time enough to

.4. 
4

f4
4

.%.*. 4*4

kol
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let the subnetwork that models their activities reache local

equilibrium. The GSPN can then be decomposed to the GSPN (NI) in

figure 4.7 of example 4.4 at the lower level, and the SPN (N2) in

figure 4.5 of example 4.3 at the higher level of the hierarchy.

In figure 4.19, let r0l and r02 be the rates of transition t0

for N1 and N2 respectively. Then, at each state k of N2 which is

defined by the number of tokens in p7 (i.e, for a certain number

of asynchronous tasks in the system), NI is to be solved for the

local steady state probability distribution PI(M',k), M' SI'

where S1 is the reachability set of N1 when there are N tokens

initially in pl (figure 4.19 (a)). And rOl(M',k) = P(2).r0(M',k).

Also the local performance parameters such as throughputs,

utilizations, and mean queue lengths are to be evaluated. Then N2

can be solved as mentioned in example 4.3, with

1r9 2 (k) =(I-P(2))ft 4: SI rg(M',k) P1 (M',k),

and r 6 (k) = I SI r 6 (M',k) PI(M',k) •

Where r 0 (M',k) and r 6 (M',k) are the throughputs of type 0 and

type 3 tasks respectively at node 0 of the QN at state M=(M',k).

And the global performance parameters can be evaluated from local

ones as mentioned before.

The above was implemented for a set of ten central server

models. Table 4.4 shows the different parameters of the models.

This set contains cases with only moderate utilizations at the

devices as well as heavily CPU and / or: '0 bound cases. The

following parameters are common to all cases;

N =2, P - i - P112 =  0 9 , .213= - P212- 0-9
P310i - P312= 0.1 , s0 1 = l , ad3

rV,."..
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!Model number P(2) POLO S11 $21 S2

1 0.9 0.5 0.5 0.5 0.1

2 0.7 9.5 0.5 0.5 0.1

3 0.5 0.5 0.5 0.5 0.1

4 0.9 0.1 1 0.5 0.04

5 0.5 0.1 1 0.5 0.04

6 0.3 9.1 1 0.5 0.04

- 7 0.9 0.1 0.0]. 0.05 0.008

8 0.7 0.1 9.01. 0.05 0.008

9 0.5 0.1 0.01 0.05 0.008

10 0.3 0.1 9.01 0.05 9.008

-------------------------------------
Table 4.4 Paramerter settings for central server models

- Notice that the synchronous tasks are. CPU bound and the

asynchronous tasks are T0 bound tasks.

F-z Each of the above models was simulated by a simulation

program written in SIMSCRIPT 11.5. And each simulation was run

for several minutes on an IBM 3033.

Table 4.5 shows the percent relative errors ( 199

percent times the absolute value of simulation estimate minus

approximate analytical value divided by simulation estimate ) for

the performance oarametezs of each model.

°P .; _- . - -' . - . . . . . . . . "



MODEL THROUGHPUTS AT CPU OF TASK UTILIZATION MEANA QUEUE LENGTH
.40. TYPE 0 1 2 3 CPU 10 AT CPU

1 0.1 0.3 0.0 2.2 0.5 0.0 4

3 14 14 15 1.5 1. 1. 205.-

2 0.6 1.6 1.6 0.5 1.9 0.1 0.5

S4 2.2 1.8 1 0.1 2.2 3.8 7.2

*5 4.6 4.3 4.3 6.3 5.2 2 0.1

6 15 17 17 17 1.9 is 10

* 7 5.1 5.2 4.9 6.9 4.7 5.3 6.1

* 8 3.1 1.4 2.1 2.1 2.7 2.8 2.5

9 0.0 1.1 0.4 3.8 0.6 1.3 2.5

* 10 4.8 6.3 6.3 6.3 5.3 5.6 10

Table 4.5. Percent relative errors 
"r

Large errors were found in models with high IO

utilization (around 90%), such as models 3 and 6. Best results

were found in the CPU bounded models, as expected. The above

decomposition of GSPNs will be investigated further in Chapters 6

and 7.

% ' S --*, - .- . . .J . : :. .; . , .- .; ... * .. ft* . . . . ,
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i! CHAPTER 5 .'

ANALYSIS OF THE GENERALIZED STOCHASTIC PETRI NETS

BY STATE AGGREGATION
".5

5.1 Introduction

In this chapter, the analysis of GSPNs will be considered.

"he existing methods of analysis will be briefly described with

.heir advantages and limitations. A different and more general

[. tethod of analysis will then be presented.

As mentioned before there are two types of transitions in

GSPNs, immediate, and timed.' Once enabled, immediate transitions

!ire in zero time, while timed ones fire in an exponentially

distributed random time. Several transitions may be enabled by a

ia.king. If the set of enabled transitions H comprises only timed

transitions with rates r i (i H), then the enabled timed

transition t i fires with probability
- -1

. H comprises several timed transitions and one immediate

transition, then this is the one that fires with probability one.

.. H comprises several immediate transitions, it is necessary to

p ecify a probability distribution on the set of enabled

.imediate transitions according to which the firing transition is

selected. The subset of H comprising all enabled immediate

t:ansitions together with the associated probability distribution

s called a random switch, and the associated distribution is

:alled the switching distribution.

Assuming that the reachability set S is finite, and firing

rates of :imed tr3nsitions do not depend on the time paramet-.

*-.'' ~z , fi¢, ,l~',2 -/.'.> '->% -. -..;&- *. t.:K* Q.j.*.. .. --.--. '.. :.-.- '"- " ".."- ' - -. -.



77 ,

.however they may be marking or state dependent), Marsan et al

[MAR84] have recognized that the time behaviour of a GSPN is

!equivalent to a stationary (homogenous), finite state, continuous

time stochastic point process (SPP). And that a one to one

correspondance exist between GSPN markings and the SPP states.

,.,:The sample functions of the SPP may present "multiple

discontinuities" due to the sequential firing of one or more

di immediate transitions. The process is observed to spend a non-

. negative amount of time in markings enabling timed transitions

only, while it transits in zero time through markings enabling

immediate transitions. It is called tangible a state (or a

V marking) of the former type and vanishing a state (or a marking)

of the latter type.

Therefore, the state space of the GSPN is divided into, a set

of tangible states, and a set of vanishing states. Furthermore,

by assuming that the GSPN is irreducible, i.e., each element of

the set of all possible markings S is reachable with a non-zero

probability from any other state of the set (no marking, or a

group of markings exists that absorbs the process), they proposed *

:wo solution methods for evaluating the steady state probability

distributions of the GSPN.

The first method, which is a simple extension of the one

1- proposed by molloy (MOLSIJ, assumes that all immediate

t:ansitions are replaced by timed transitions characterized by

very high firing rates propotional to an arbitrary value x. Under

his assumption all states are tangible, and the GSPN reduces to '"

a standard SP.J, which can be analyzed by solving the

corresponding M.C.. If an explicit solution expression for the

.-%
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probability distribution of this SPN is obtained, the steady

states probability distribution of the original GSPN can be

obtained by taking the limit for x going to infinity of such

solution. However, since most practical cases involve GSPNs with

a large state space, an explicit expression of the solution in

terms of x is usually not easy to obtain, and the practical

approach that can be suggested of numerically solving the problem

by assuming x to be very large and setting to zero those

" probabilities that appear exceptionally small, is confronted by

numerical problems. Moreover, the above method not only requires

useless computations of the probabilities of vanishing states,

but it also increases the computational complexity by enlarging

the size of the rate transition matrix.

The second method proposed in (MARS4] eliminates some of the

disadvantages of the above method, by computing the total

transition probabilities among tangible states only. The method

is described as follows:

Let S = state space of the SPP, ISI-ks
T - set of tangible states in SPP, ITI=kt

V - set of vanishing states in SPP, VfI-kv

with $ = T U V, T 0 V = 0, and ks = kt + kv.

Disregarding for the time being the concept of time, and

focusing attention on the set of states in which the process is

Led because of a transition out of a given state, it is observed

that a stationary embeded markov chain (EMC) can be recognized

within the SPP. The transition probability of this ZMC can be

written as follows:

%,= ... _',- ;. .. , . ,... .... , . -,. -, -* . . . . .
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NI
kv kt

D] 0 kv

[ 01F 4  kt

The elements of matrix A, which represent the probability

that the process will go to a vanishing state (C) or to a
tangible state (0) given that it is at a vanishing state, can be

obtained using the switching disributions of random switches. And

the elements of B, which represent the transition probabilities

given that the process is in a tangible state, can be obtained

* usingthe firing rates of timed transitions as in relation5.I•l.

The transition probability matrix Q a [qij] between tangible

, states only can be computed as follows:

qij a fij + Zrev eir Pr r-p jI, i,jfT, r6V (5.1.2)

where fij is the transition probability from tangible state i to

" tangible state j, eir is the transition probability from i to a

vanishing state r, and Pr[r-> ji represents the probability that J-

the SP? moves from the state r to the state j in an arbitrary

number of steps following a path through vanishing states only.

The probabilities of reaching tangible states in exactly k steps

of vanishing states starting from a vanishing state are given by

Gkd,ha Ch (5..3).

The irreducibility property of the SPP insures that the

spectral radium of the matrix C is less than one. This implies

that the limit of the sum limk..zoo C- h exists, and is

finite. Equation (1.2) in the matrix form becomes

I'L4 Ch 0 where Ch=3 h > ko  .
where, G°3 - h0a

.(I-C)"l ,since this equals toa h.0 C h 0 ,
" - ,' -, . .- ." .. O . ,,

_ ' €, L ,.& I',.-' ." '...', ".-" '.- .* - " . . " ...



phich corresponds to cases where there exist no loops among

,vanishing states, and cases where such loops exist, respectively.

The solution of the system of linear equations Y a Y.Q, can

,.be interpreted in terms of the number of transitions performed by

%.he EMC observing that

i/lY i  E( number of transitions performed by the EMC to return

-* to state i}

Selecting state i as a reference state,

t.et Vii j/yi E( number of visits to state j between two

subsequentvisits to state i}

The computation of steady state probability distribution of

0the SPP can be obtained reintroducing the concept of time by

means of the average sojourn time in each state (STi , ifT) as

follows:

Let Hi a set of timed transitions enabled at state i

then STi= i/ k i rk , is the average sojourn time for state

The amount of time spent by the SPP to return to state i is

4i "'jeT Vii STi , where Vij is considered to be the mean

Si~ amount of time spent by the SPP in state j during a cycle. The

. average fraction of time spent by the SPP in each of its states

is given by

Pi UVil STi/ Wi j i S

W.. hich is the steady state probabliity distribution of the SPP. "

The advantage of the above method over the first method 9.

is that it :educes the impact of :he si:e of the set of vanishing



Istates on the complexity of the solution from O(ks**3) in the

airst method to O(kt**3) + O(kv**3), where ks - kt + kv.

Appart from the fact that SPP must be irreducible, the above

method, however, have a serious limitation. It implicitly assumes

that the steady state probabilities of all markings that enable

immediate transitions are zero. This limitation will be

demonstrated by the following example.

Uxample 
S. I

Consider the GSPN in figure 5.1, t1 and t2 are timed

transitions witn rates rI and r 2 respectively. The rest of the

transitions are immediate transitions. The reachability set S

': with one token in the network is

I 1 0 00

2 0 1 00

p3 0 01 0

4 0 0 103:

Solving for the steady state probability distribution of the

S"above states using the first method, where we assume that the

. " iring a es of all immediate ransitions is x, the rate

t:ansition matrix of the corresponding M.C. is,

1

+ -x x 0

AId x (xr):

r2 0 x -(x+r2) N

.5 * ,... +* 
Sr, ..%,/ . -. , *. ' ,, *. *-. ., -.; .+...,: ,,."./ 

. ,.' .-. • .'.",",;,.. ..- .-.

4 * . . t i 
- [ : - , P , _ p m ' + m . m+? ' , .mt" 'm '+ l S % . w~ ¢ +
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The S.S. probabilities P (P1 P2 P3 P4] are obtained by

solving

Let d a 2 ri/x + 2(l+rl/r2) + rlr 2/x

then,

P1- €(.+r 1/x)/d , 22 a 1/d , P3 , (.+r 2 /x) rl/(r 2 d) ,

,, and P4 a r, /(r 2 d) .

in the limit as x-->oo, we have

P1 = P2 = 1/2 r2/(rl+r 2 ) , and P3 P 24 = 1/2. rl/(rl+r 2 )

Using the second solution method, although the GSPN and the

corresponding SPP is irreducible, it is treated by this method as

if it is reducible to two ergodic classes: states 1 and 2 as the

first, and states 3 and 4 as the second class. Therefore, the

method is not applicable in this case, and in any GSPN where

"" ergodic instantaneous markings exist.

To demonstrate the importance of the above class of GSPNs,

consider the matrix A in the above example. 1f every element in A

is divided by x, then

A - A(p) - AO + p Al, where p - l/x,

1 -I r rl 0
A9 0 1 1 an Al [00 -:21S 0 - Vand 2 0 -r2

The steady state probability distribution of the GSPN can be

obtained from those of the above M.C. be letting p --) 0. Clearly

the above M.C. is singularly perturbed since rank A(p) > rank

A(). Therefore, a GSPN is equivalent, in the sense of steady

4 state probability distributions to a perturbed S.N with rare
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, transitions modeled by a small parameter p in the limit when

p -- 0. And the class of GSPNs, equivalent at the limit to

singularly perturbed SPNs, have an important role in the

* hierarchical aggregation of the later. The hierarchical

aggregation of SPNs will be described in Chapter 7.

In the next and subsequent sections we will introduce a more

general solution method that will alleviate the computational and

- numerical disadvantages of the first method by eliminating the

'-' set of vanishing states, and generalize the second method. The

method that will be discussed is based on charactrizing the GSPN

time behaviour by a stochastically discontinuous finite state

.Markov process, which is a special SPP. The properties of this

process will be discussed in detail in the following section.

5.2 Stochastically Discontinuous Finite State Markov Process

The stochastically discontinuous, continuous-time, finite

state markov process is a process (x(t), t _ 01 that may undergo

" an infinite number of transitions in finite time intervals. Such

processes violate the continuity condition

hint_... Prtx(t) a X(0) } = 1

They were first analyzed in [D0042, and DYN65], but were

considered pathological from an application viewpoint, and since

then stochastic continuity has been a standard assumption in the

. literature. Coderch [COD83bl has recognized that stochastically

discontinuous processes are obtained as limits of markov

processes with transition rates of different orders of magnitude,

and that the stochastic discontinuity property has a natural and

important interpretation in this context.

Stochastically discontinuous ?SMP's (SDMP)are
""*. .- .-" '. . - " -. ".

"~l'wu"m'm:lmLMaakm na|--I~N llk'aJ 
' -

" ' '" " ' ". '"".. ' .. . . . . . _' -. / ' ,
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Ntharacterized as follows:

P Let (X(t), t > 0} be a E'SMi taking values in a finite state

b ispace E - (el,e2,...,en}. This process is completely described by

:-Its transition probability matrix P(t) whose elements are

pijt)a Pr(X(t) a ((O) a ill iLd f E, t > 0.

and satisfies the following conditions:

Ci) P (0) 1 , ii) P(t) > 0 iii) p(t) l+ I+ l and

It is known that 2(t) is continuous for t > 0, and the limit

I im(t Z always exists. if Z is the identity matrix then

the process x(t) is called stochastically continuous, otherwise
r.
,-.it is stochastically discontinuous with the following transition

.probability matrix:

Theorem 2.1: If P(t) is the transition probability matrix of a

tSDMP then,

F 2(t) =Z exp(A t) t> 0 521

" for a pair of matrices Z, A satisfying:

iZ > 0 , Z.l+.l~, Z -Z ;ii) Z.A a A.Z A;

iiA.l4-l+ iv) A +- c Z > 0 for some c > 0

* Conversely, any matrices A, Z saltisfying the (i)-(iv) p

-unquely determine a FSMP with transition probability matrix

.given by (5.2.1).

:-Proof: (COD83b] .

The matrix z -limt.p, g 2(t) is referred to as the e.-gcdic-

~projection at zero, and the matrix A =ih.*0(P(h)-Z)/h is

-~alled the infinitismal generator of P(t).

The diagonal entries of the mnatrix Z classify the states of
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., the process as follows:

Definitionl: A state i is called instantaneous if zii < 1, and

regular if zii = 1. An instantaneous state j is called evanescent

if zjj .

It was proved that:

. 1) the sojourn time in an instantaneous state is zero with

probability one (w.p.l), and in a regular state i is

exponentially distributed with rate aii (diagonal entries in A).

2) Even though the duration of stays in a given instantaneous

state is zero w.p.l, there is, in general, a non-zero probability

of finding the process in an instantaneous state at any given

C2 time. However, the probability of finding the process in an

evanescent state at any given time is zero. The evanescent states

can thus be negelected in the sense that there exists a version

of the process X(t) with the same finite dimensional

distributions which does not take values in the set of evanescent

states. -

3) Z is the matrix of ergodic probabilities of a markov chain

and as such it determines a partition of the state space E in

terms of ergodic classes i , i-l,...,s, and transient states ET,
Egi.e., E - (Uit l Ei ) U ET (5.2.2)

this is referred to as the ergodic partition at zero. Each

ergodic class Ei consists of either one element ( a regular

state), or several elements (instantaneous states). The set of

transient states "=T characterizes the evanescent states.

The evolution of a SOMP can be thought of as follows: While

in a regular state it behaves as a stochastically continuous

prccess. Upon entering a state belonging to an ergodic class at

. . ., - .. .••.".....• -. ,-............,... ..... .. "... ............ * , .. ... .. 't*.
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,zero with more than one state, say, Ek, the process starts

.switching instantanuously among the st'ates in Ek. The amount of

time spent in Ek is exponentially distributed, and after a random

, stay in Ek the process jumps to some state in E-Ek. Evanescent

states may be visited during transitions between the ergodic

classes at zero.

The probabilistic properties of a SOMP are derived from its

. ergodic projection at zero plus an aggregated version of the

process that is stochastically continuous. This can be

demonstrated. as follows:

proposition 2.1: Let Z be the ergodic projection at zero of a

SOMP, then by adequate orderiLig of states,

•N Z 22 *.*... ....

Z =(5.2.3)

* * .0

.3:Zl s+l Z s~s+I .

.. with ZX. = l+.wkT , kul,...s, for some vector wk > 0 such that

< Wk 1; and Zk,s 1 a dk.wkT P k-l,...s for a set of vectors

dk z> O, such that X"k. dk

Furthermore, define the (nxs) matrix V and the (sxn matrix U

as follows:

V.



'N se 0 ...... 0
U ..,.. 0

0 0 0 0 6

wii

,"-d 1 . d2  ds.

w 0 .... ..... 0

. ( (5.2.4)

0 0 0

!: 'Then, -

v u a z a v VEr (5.2.5)
Proof: Follows from the fact that Z is the matrix of erodic

:. probabilities of a markov chain. The vector wk is the vector of

steady state probabilities of a chain with state space Ek and

steady state transition matrix Zkk. The vectors dk are the

.. trapping probabilities from transient states to the ergodic

classes [000531.

- The structure of (5.2.3) makes explicit the ergodic partition

. at zero. (2.4) is called the canonical product decomposition of

Z. Also U and V satisfy the following

3.1 + = + V .1 +  + U. Z a U , andZ.VuV

Theorem 2.2: Let P(t) Z Z exp{A t} be the transition probability

* matrix of a SDMP X(t) taking values in E-(el,e2,...,en} and let s

'Coe the number of ergodic classes at zero. Let Z a V . be the

canonical product decomposition of Z, then ""
* P'(t) - U P(t) V - exp(U A V t} , for all t > 9 (5.2.6)

* . *a. - ... "" .- ,,," ,, - .a .V .*. *,- ' '..- -*.. .. ** *-*, -.- . . .,. ,, - - --- a.. . ...- ,

U ' .... - :- " "* ' %% % % . .'
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is the transition probability matrix of a stochastically

I continuous FSMP taking values in E'u(el',e2',...,es'}, and

P(t) - V P'(t) U . for all t > 0 (5.2.7)

Proof: (COD83b]

Equation (2.6) can be interpreted as performing an

aggregation operation that masks the stochastically discontinuous

nature of P(t). Also equation (2.7) can be interpreted as

E ollows:

Pr[X(t)-ei / X(l)xej}- wli Pr[X'(t)-el' / X'(G)-ep'}

~ej 6 Ep fe i Cr El

where wii is the component of the steady state probability vector

wl corresponding to ei. That is, the transitions between the

.- ergodic classes z are governed by the aggregated process, while

once in one of the classes El, the probabilities w1 are -;

immediatly established due to the instantaneous nature of

*m transitions.

It should be noted here that the above aggregation is exact,

i.e., there is no approximation involved whatsoever, whereas the

aggregation described in the previous chapter was approximate due

to the fact that the transitions were not quite instantaneous.

Corollary 2.1: The rate transition matrix A' of the aggregated

" process X'(t), which is the infinitismal generator of P'(t), is

given by,

A' * U A, V (5.2.8)

- where A, is the matrix of transition rates of the process X(t)

when all instantaneous transitions have been removed.

r Proof: Follows from theorem 2.2 above, and the theory of 7

,, . "' '- .'; -... -.. .,:.. **v" ,-'- **-, -"- * .... -. . .. .. .. ,:-.--.. - ' -. ' " " - " -"- ""'. -

b, - m I " " i i * d • -" * " " " " " * - I -- i
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/. singularly perturbed FSMP's presented in the previous chapter.

Example 5.2: Consider the GSPN in figure 1.1 of the previous

section. The graph of the GSPH represents the transition diagram

of a SOMP with state space E-[el,e2,e3,e4} represented as follows

61 1 0 0
e 2 0 1 6 0
e 3 0 10a
e4 00 1

Clearly the ergodic partition at zero is

El-(el,e2} , and E2 =(e3,e4}

[Z1 0 1/2 1/2

since w2 [1/2 we/21 1

l12 1/2 0 1/21t hen 7 -0 1 and U7=;

a- 1 0 1/2 1/2

' ?he rate transition matrix A' is given by

A' U Al V , where A1  9 - 0 01
r2 -= .'.-

-1/2 r 1 1/2 ri
then A' u [ 1/2 r 2  -1/2 r2

- Solving the aggregated process for the steady state probabilities

of the ergodic classes, we have

.P' (E) 2 / (rl r 2) P(E 2 ) = rl / (rt+r2 )

and the steady state probabilities of the SDMP are evaluated by

(e) P(e3)

P(e2 w P(L) , and P(e4 2 P(E 2 )

therefore,

)-m " -'%, - . , . .- .. " . . - .. , . *** . . . - . . . . . . . . . .. - x. .

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . - " , . ' '' .""*""""""



A " P(eLl=Ple2)= 1/2 r2/(rL+r2 )  ,and P(e3l=Ple4)= 1/2 rl/lrL+r2):'

which is the same result obtained before using the first method

in section 1. ,

5.3 Evaluation of the GSPtI steady state probability distribution

"" In this section a solution method for the steady state

* probability distribution of the GSPN will be presented. This

method is based on characterizing the time behaviour of a GSPN as

K a SDMP.

Theorem 3.1: The marking sequence of a live and k-bounded GSPN

forms a SDMP.

proof: Let S = (Ml,M2,...,Mn} be a reachability set of a Live

and bounded GSPN with an initial marking Ml. Since the GSPN isI "
live, then there exist no marking in S at which all transitions

are disabled.

Let (X(t), t>=} be a stochastic process with a finite state

" space E = (l,2,...,n}, such that

* I- There exist a one to one mapping F' between the elements

of E and the elements of S, i.e., for each Mi E S,

there exist a corresponding state i 6 E, such that P(Mi) * i ,

2- For each Mi,Mj E S, where Mj is reachable from Mi by the
L

firing of a transition enabled by Mi, there exists a transition

. i n %(t) from the corresponfing state i to j, and

3- Fo: all i E ,, the soujorn time of i is equal to that

of Mi , ie,

.. P[ X(w) i, w [ [a,tl/ X(O) - il - exp(-yi ti

-* " "".-" , - , , ' " - - - . .
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'here -i 2..)- rj , and ri is the rate of transition tj

enabled at Mi, k>0l. If any one of these transitions is an

N~mmediate transition, the above probability will be zero, since

:he rate of such a transition is infinite. Therefore, the soujorn

time of state i is either zero if Mi enables any immediate

transition , or exponentially distributed if Mi enables only

timed transitions.

The state space £ of the above process can be partitioned

,.-into a set of instantaneous states, and a set of regular states

..with exponentially distributed soujorn time. Clearly, if all

states are regular, then X(t) is a finite state stochastically

N"continuous Markov process. From the theory described in the

previous section, the existence of instantaneous states results

in a Markov process, The transition probability matrix of which

P(t) is discontinuous at t-0, i.e., from theorem 2.1
P(t) - Z exp(A t}, t > 0, P(0) = I , and Z = lim,,_ 0 P(t)

r.' all states are regular, then for each state i , zii = 1, and

S- *I. If there exist an instantaneous state i, then zii < 1, and

thAe process is stochastically discontinuous. *

The above theorm establishes the fact that the steady s6-ate

; .robability distributtion of. the GSP. markings can be obtained by

solving the corresponding SOMP. As in the previous section, we

a eed to obtain the matrices U, V, and A', which fully

-haracterize the time behaviour of the process. These matrices

ire obtained as follows:

From the :eachability graph analysis [NAT 80, FLO 84,85, CH-

W '51 of the GS.I under immediate t:ansitions only, the

. achability set S can be partitioned into two subsets S, and S2 .
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f'The subset S2 contains markings which enable any immediate

transition, and markings reachable by the firing of an immediate

-ransition. The subset S, contains all other markings.

.I Furthermore, S2 is partitioned into several subsets S2i,

isl,..,g, and a subset S2T. This partition corresponds to the

state space partition into ergodic classes at zero expressed in

-.equation (2.2) as follows:

e a Sa l U S2 (5.3.1)

:where, s1 0 Olia eil, S2 O(U 1 Si) U S2T , and k * g s

-which is the total number of ergodic classes at zero. Each S2i

consists of one ergodic class which may contain one marking that

absorb the process under immediate transitions, or several

markings reachable from one another by immediate transitions.

:ach ei' consists of one marking. And the set S2T consists of

transient markings.

The reason for the above modification of the partition of

argodic classes at zero is to allow a more straightforward

:cnstruction of the matrices U and V, which can then be

;artitioned as follows: -"

iS S2

SI k , and U - (5.3.2)
S 2 K' K"1

-wea 1. is an identity matrix of dimension k, K' is an (n-k)xg

=at:iix, and K" is a gx(n-k) matrix given by

'°°° I
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S21. S22 .. S~g S2T

S21 I+ T

S22 1 + w2T
FIX' I , K" wT

S2T dl d2 . dg wgT

where di is a vector of trapping probabilities from transient

-"markings to the ergodic class in S2i. And w i as before is the

,.,.steady state probability vector of a marko7 chain with state

space S2i.

The vectors of trapping probabilities can easily be obtained

as follows: consider an absorbing MC with a state space defined

by the union of the set S2T, and a set of g absorbing states each

.. of which corresponds to an ergodic class S2i, i-l,..,g. The

transition probability matrix PT of this MC is given by

1g
PT.

S2 TLY

Where I is an identity matrix of dimension g, yij is the
g

transition probability to any state in ergodic class j from a

state i in S2T, and xij is the transition probability to state j

in S2T from state i in S2T. The vectors of trapping probabilities p.

are then computed as follows (KEM 601,

.dl d2 . . dg] a (I-X)- i  • Y (5.3.3)

To obtain the aggregated matrix a', consider now the GS-.

under timed transitions only. The mat:ix Al , which is the matrix

of transition rates between markings that enables timed

I ~ transitions, is also partitioned as follows:
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A 1  ] , where A" is a kxk matrix with off-

diagonal elements representing transition rates between marking

that belong to the set SIP B" is an kx(n-k) matrix with elements

representing the transition rates from markings that belong to S, 1

t to markings that belong to S 2 , and such that the diagonal

elements of A" is the negative of the sum of the off-diagonal

elements of each row in A" plus the elements in the

:, corresponding row in B". Also D" is an (n-k)x(n-k) matrix with

off-diagonal elements representing transition rates betweem

markings that belong to S2, and C" is an (n-k)xk matrix of

.. t...ansition rates from markings in S2 back to markings in Sl, such

that the diagonal elements of D" is the sum of the off-diagonal

Selements of D" and the elements of C" for each raw.

Using equation (2.8), the sxs matrix A' is obtained as

-z.llows:

A' U A, V - (3.4)""K"C" KittDtoK I

Which can then be solved for the steady state probabilities of

the ergodic classes at zero P(ei'), i-,...k, and P(S2i),

* L,...,g. The steady state probability distribution of the GS.N

.." arkings can then be evaluated .rom,

P(Msi) = P(ei) , i-l, .... ,k , where Msi are markings that

'belong to SI, and

- [ 1a Wit P(S2i) for the j markings that belong to
,... (.M i) S2i, iml, .... . , . .

5.4 Examples

<.--. .::.::,:-~~~~.. :. . .-. .. ... . ,. .. . ,.-"



1) Consider th.e simple GSPN shown in figure 4.7, with one token

initially in pl, the reachability set is

Ml 1 0 0 00

M2 0 1.0

M3 3001 10

M4 a1 0 01

MS a001 1

Under immediate transition t3, we have M5 -- Ml, therefore

S1  [M2,M3,M4} - (el,e2,e3} , S = Mu, and

S2T. {MS}. .

*:Then r
V a 0 1 U Li 0 a,

0 0 01 a 1 ol

o, 0 a w1

ri
1*., KI II w

A also A" 0 -r2 , B" r2"
Ld J'

and D : , C " 
"

and using (3.4) the aggregated transition matrix is given by

-(r1+r2) :1 r2 0

0 -r2 0 r2 -

A' 
0 0 -rl .

nO 0 a -

-A..
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2) Consider the GSPN in figure 5.3. t 5 and t 6 are immediate

transitions that form a random switch, and fire with probability

P (5) and P(6), respectively. The reachability set S is

M1 I. a 0 0 a 0 0 ..i

M2 9 1 00 0 0

-T M3 0 0 1 1 0 0 0

-. M4 90 1 1 00

M6 a 0 0 0 0 1 0

7 0 0 0 0 0 0 1

Considering immediate transitions only we have

Ml

w 16 M7p'
A2 -- M3

V9

- We can clearly distinguish two ergodic states Ml and M3.

" - Therefore,

S21 * {M3} , S22 - (MI}, and S2T - {M2,M6,M7}

where M6, M7, and M2 are evanescent states. To obtain the

trapping probability vectors from these states to S21 and S22, we

*- have, '-

M3 1 0 10 0 0

Mi 0 l 0 0 0

PT M2 1 0j 0 0 a

M6 0 0~ a 0 1

M7 0 P(6) 1?(5) 0 0

...- . ,...5-. .*.,.-
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rO.

p1

t2 r -

TS
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,and from equation (3.3) (dl d2 = (5) P(6)

(5) P(6).

43 1 0
K' M3 0 1 Fl 0 01
K' M2 10 1 0 1,and K"

,16 P(5) P(6)
m7 P(S) P(6)

4o considering timed transitions we have

M4 r 2 ( B" 0 0 0 0

-rM - 0 0 rl 0

• i~..-M3 l 0 r2 -(rl+r2) -g r 0 "" 0'I

C" " 2 0 0 ,andD" 0 0 0 0

M6 0 0 0 0 0 0 0

M7 0 0 0 a 9 0

P (5) =2 P(6)2 1 r2

S :hen 2"K' I, "C" = , and -
__ P(51r :L (61 : .

I"D"K It , therefore, we have
' to -rg "l

-:2 a ?(5):2 P(6)r2

S0 -:. 2(5)rl 2(6):].

30 to -:

3) Consider the GSNJ in figure 5.4, transit'ons t2 and t3 can be

siultaneausly anabled. Therefo:e, the proPabilities .(2) and
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P(3) are assigned to determine wich one will fire first. The

r: eachability set is given by

Ml 1 0000 999 90

M2 0 1.10090 0 0

M3 0 0 1. 0 0 0 0 0

M4 0 1 00 1 00 00

M5 a 0 0 1 1 0 0 0 0

M6 00 0 0 0 1 10 I
v- M7 0 0 0 0 0 0 1 1

M8 0 0000 910 01

e M9 0a0 0 00001 1

Again considering immediate transitions only, we have

M9 -- M Ml -- 6'.

Therefore, there is one ergodic class given by

S21 - (MlM2,M3,M4,M5}, where M9 is a transient

state. Solving the above markov chain, which has a transition

probability matrix 2 given by

MI 0 1 0 0 0

M2 0 0 P(2) P13) 0

P M3 0 0 0 0 1

M4 0 0 0 0 1 "5

fM5 I. a 0 0 ,5

for the steady state probabilities we get,

w- /4 1/4 P(2)/4 P(3)/4 1/4 ]. 5.

• 5r . , ,;, .-.' , .-k '-.-,.> " - ** ij " " - . ." . - "' ' .' . • , • - - -
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Then, K'T  1 [ 1 1 1 , and K" W1

Considering timed transitions, we get,

M6 -(r6+r7) :6 07 0 0 0

A" M7 0 g7

:.-

3 0r 0 0 
" 

00M2 0 0 0 0

MS 0 0 00N 0 00

c" M3 0 0 0 00 00

Then, 

*BO 0"' K"C", [ 1/4.rS 0 0] ,and 1V'D"V'*[14'~

Therefore,

"(r6+r7) r6 7 "
.. 0 -:7 0 7.

-0 0A -:6 :6 "

L'- ]./4.r:5 0 0 -1i/4.r=5 .

A,'

r r

.-...... .,........... . ..

e , -i31 , /_." - * . * **" " -," .. . _.. , . , *, ,- ,_a J . . .. .. * - " . .. ... ' •:~ .'.", " .- -. - .' " " "- "" "
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CHAPTER 6
TECHNIQUES FOR REDUCING ANALYSIS COMPLEXITY

.6.1 Introduction

The method described in the previous chapter is valid fox the

analysis of general GSPNs. However, the analysis can be quite

complicated for GSPNs with large state spaces. For example,

sconsider the GSPN in example I of section 5.4 in the previous

---Chapter, with one token initially in pl, there were 5 feasible

states for the network. If, however, we added k tokens in pl, the

number of states will be in the order of 5k. Therefore even with

such a simple GSPN, an explosion of the state space can make the

analysis very complicated.

In this chapter, rather than describing the stochastic

.- behaviour of a GSPN by a SOMP, which is then analyzed from its

I projection at zero plus an aggregated version of it represented
.:--

by the rate transition matrix A', we attempt to do such

- aggregation or reduction directly at the GSPN level.

The analysis in this chapter will be restricted to a class of

GSPNs that inherits the structure of restricted PNs. Such PNs

will be defined in the following section, and some of its

important properties will be developed.

. 6.2 Restricted Petri Nets

Definition 1: A Petri Net PN a (P,T,I,O), with an initial marking

M 1l and a reachability set S, is called a restricted PN if all

arcs have a weight of one, i.e., the input and output functions
°..1

".' -' /'- ".,'. "'."."-" '- " " ,- ,. . *- .. . *-*., - **--,****2'. " : - . '-", -. "-"-" -"-"-°. - . : .-- '..-- -. ',
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are such that, I: PXT -- ( i3,l} , and 0: TXP -- P (0,11, and for

-*-any transition in T the set of input places and the set of output

Mlaces are disjoint (self-loop-free).

We will also assume that the PN is live and bounded, i.e.,

.:.'or e;ery ti E T and for all Mk J S there exists a transition

fizing sequence starting at Mk and ending at a marking that

enables ti. An important property of restricted P?4s is
'W

"established by the following theorem,

.i-Theorem i: (superposition theorem)

For any restricted PN, let S1,S2,..,Sk be reachability sets

tobtained from the different initial markings MI,M12,..,Mlk,

• respectively. Then for an initial marking Ml' = MllMl2... Mk,

which gives a reachability set S',
It

if Mr' =mj1 Mj2 2 +... Mjk k  (6.2.1)

,where Mu'"E si i

then M:' 53, i.e., ' (sls2-...-sk) .

• Moreover, the above condition becomes necessary and

sufficient if for every initial marking Mli, i=l,t.k, the PN is

L live.

To prove the above theorm, we need to introduce the following

defini tions.

L Definition 2: for a restricted ?N1 (.mT,:,0),

where P = 4o! p2..,n},T t t,t2,.. f, t.,

:PXT- {3,I , and 0:7X?3 with an

ini:ial marking M! and reachabZiity set 3, then for any Mk,Mk-L

S, such that 'k is immedia:>' :eachable .r ,, Mk-l by the fi:inc

of transition t.,

Mk Mk-. T J (6.2.2)

:/~~~~~~~~~~~~~~~~~~."..T .',.".-.'. . . . ..... " " "," '" " -"- -. .. .. ..-. . .. .. * - * • " . . " .. ,,," 
'
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'.. where Mk and Mk-1 are nxI column vectors, Uj is an mxl column

v ector with exactly one nonzero entry in the position

corresponding to transition tj, and 0 is an mxn matrix called

i transition to place incidence 
matrix defined as follows:

D - DT 0 +, where D" (dij} ( (I(pitj)},

and O - (dij } * (O(tipj)J.

Therefore, the entries of matrix 0; dij, are 1, -1, or 0 if

transition ti has an outgoing arc to place pj, an incoming arc

from place pj, or no arc between them, respectively.

L Equation 6.2.2 is the matrix form of equation 2.2.1 in

Chapter 2 [MUR77, PETnL]. For example, for M1 and M2 in exmaple 1

of section 5.4,

ti. It2 t3 t4

1 P 1 pF-.1 0 11 1
"' + p3/ 1-1 0 0

6 j L+ 
.1 "L

The above can be extended to a sequence of transition firings

as follows:

Definition 3: for any P. with an initial marking MI, incidence

matrix 0, and reachability set S, if Mk ES, then

Mk MI + DT Ulk (6.2.3)

where Ul,k is an mxl column vector called the firing vector, the

ith element of which is the number of times transition ti fires

.L in the transition firing sequence (tjl,tj2,..,tjk) starting from

.L and ending at Mk, i.e.,

Ul'k - "'iaI i

.. .. .. ' ' + °',L i ,.5 " " "" " '- " "- • ". "- " ,". 
.'- '. " .'. "- " ". -.'- " .", 

• -" + ' '... ... 

.-.. . . . . .". .-.
"-.. 

. . .- 
.. 

.+ 
+
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.roof of theorem 1:
-a Let Mr' mjll + Mjk k

zfcr any MjiL E Si, i-1,..,k.

By 6.2.3, Mj i M 4 DT + 0 ji , i-a,..,k.

k en1 M _ l h r ,j i

' Ml I D U

Since Ml' is the initial marking for the reachability set S',

'Ind all the transition sequences in U are defined in Ml', then

Kigain by 6.2.3, m-' is reachable from Ml', i.e. M-' E S'.

For the second na:t of the theorem, the above oroves

ufficiency, the proof of necessity is done by contradiction as

..!alows:

Let Mr' , S', and Mr' -/= Mjl1 + .... + Mjk k , for any Mjii E Si, 'a

then, Mr' - Ml' 1 D U = M1I -12 + .. + M9k + D U,

:and since .' =/ Mjil, then

th-e:, xists no Ul,ji, such that U lU,j i that is defined

:,.-bo a sequence of transition fi:ing from Mli, then

• r ."i l D- U' , where Mmi- Ai,

and ' is a firing vecto: of transitions not enabled by any
... .9int  i=1 k. Since the firing vector U is defined for Ml',

?,then there e:ist at least two markings, :rom the above set of

markings, that can be added &ogether to enable a transition in

N Therefore, :here exist a- least one initial m a k n; f-m the

set 4 ,. 12} f, I whc.h the P N is no: lIIe whiah i a

cr.trad ction.

An imoortant consequence of the above theorem Is that many

i.ncrtan: -harac:4.s:cs of a live res:.icted P.I, with an initial

arking ..' and reachability S', can be a:,-died bzv. i,4din. .'--.

- -,..,*.- .ze. -. . .- . : f.- - .



, into several initial marking Mli with a reduced reachability sets

Si, ial,...k. And if, under each one of these initial markings,

the PN is live, then the reachability set S' can be constructed

by adding all possible combinations of markings in the reduced

sets Si.

corollary 1: for a live restricted PN with an initial marking Ml,

and a reachability set 3, if an initial marking Ml' a k Ml, for

some integer k, is considered, a reachability set S' is obtained

such that, for any Mi' S',

Mi' - Mjl + Mj2 + ... + Mjk , where Mjl, l-l,..,k, are in

S.

"' The above corollary can be used to analyze the behaviour of

3~restricted PNs where there exists a place pl P, called the

exciting place, such that, the initial marking of the PN is

*%' defined by one or more tokens in pl and zero tokens in all other
S.%

~ places. Such .Ns are particularly suitable for modeling jobs

behaviour as described in the previous chapter, where the number

"" of tokens initially in pl resembles the number of jobs that are

being processed in the system (the multiprogtamming level).

6.3 Reduction And Aggregation of GSPNs.

In this section, reduction and aggregation of GSPNs will be

: considered. By reduction we mean the elimination of immediate
"'S.

S transitions that caused the existence of transient instantaneous

markings ( the steady state probabilities of which will always be

:4
zero). And by aggregation we mean, the aggregation of subnetworks

r consisting of immediate transitions that caused the existence of

" egodic classes of instantaneous markings at time t ..
-- , - k ,.:,. ,'5 ,, ,,,* . *** . . , - . .. ,,. ¢ , .. . - . - " " .. ' ., ... -."-. - . .

.. .. - ,, .u . .L"-* ", I 
°

".. * " ' , , . ....-.. ."S-s" . 5-'o' . ' , .' ' . .
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- igure 6.1 shows four examples of the reduction process.

These examples involve subnetworks containing single input-single

output, single input-multiple output, multiple input-single

output, and multiple input-multiple output immediate transitions,

-- respectively. This process is done locally in each subnetwork

without affecting the rest of the network, which is a very

important property. The multiple input immediate transitions, as

the ones shown in figure 6.1 (c) and (d), cannot be eliminated if

,they are in conflict (i.e. share a common input place) with any

other immediate transition. As was shown in Chapter 4, by using

such conflicting multliple input immediate transitions, we are

able to model queuing systems with multiple classes of customers

3 and fixed priority queuing disciplines, which can not be modeled

by SNs. This is ofcourse due to the fact that SPNs form a

subclass of GSPNs. The above reduction process will be

Sinvestigated further towards the end cf this section.

The aggregation process can be carried out on a class of

subnetworks defined by the following definitions.

Definition 4: for a GSPN - (P,Ti,O), with an initial marking Ml

and a reachability set S. A subnetwork N a (Pl,TI,Il,Ol) is

defined such that, TlIT is a set of immediate transitions.

P1 C P is the set of input and output places of the transitions

in TI, i.e., for any pi E P, if and only if

I(pitj) a I " or O(tj,pi) = I , for any tj C TI;

then pi P l1.

Also U1 and 01 are the inpuc output functions 1 and 0 restricted

%to 21 and TI, i.e.,
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I. z(pitj) if (pi,,tj)C- PIXT I

ll:PlXTI--*{0,1} such that l1(pi,tj)m

10 if not
.. O(tj,pi) , if (tj,pi) 6 TIXPI

O7:TIXPI---(0,l1 such that Ol(tj,pi)1

0 if not

Definition 5: for subnetwork N defined above, the set of places

Pin C P1 and the set of transitions Tin C (T-Tl}, are defined

[ such that for any pi E Pin, O(tj,pi) I . for some tj 6 Tin. Also

Sthe set of places Pout < P and the set of transitions

Tout C (T-TlI are defined such that, for any pi 6 PI, with

I(pi,tj) - I for some tj 6 (Tr-TI}, then pi C Pout and tj 6 Tout.

p Transitions in Tin deposit tokens into places in the set Pin of

subnetwork N. And transitions in Tout remove tokens from places

in the set Pout of N.

The subnetwork N defined above partitions the reachability

set S into two subsets defined as follows,

Definition 6: the subnetwork N partitions the set S into two

subsets SI and S2, such that for all Mi & Sl and all pi & PI,

Mi(pi) 0 0, and for all Mj S S2, Mj(pi) > 0. Moreover the set $2

can also be partitioned into several subsets as follows,

S2 a Uil S2i ,such that for any Mk,Mj C S2i, Mk(pn)-Mj(pn)

for all pn tP-Pl}. Therefore, if Mj is reachable from Mk, then

all transitions in the transition sequence starting at Mk and

ending at Mj belong to TI.

Definition 7: The subnetwo:k i defined above is said to be

recurrent if for each S2i, i-l,..l, and for any Mk,Mi T S2i, Mk-

is reachable f!om Mj by a finite sequence of transitions in T1.
° . .. ~.. ,* *. . . .* . . .- 4 .".
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-efinition 8: The sets S2i, i=l,..,l belong to equivalent classes

mdenoted by the sets SelSe2,..,Sem, where each Sei a

{S2il,S2i2,...,S2ir}, such that the sets S2ij, j=l,..,r contain

Pexactly the same number of markings, and for any S2ij,S2in ESei,

,.there exist a marking Mi E S2ij and a narking Mj C S2in such that

for all pk PI, Mi (pk) -Mj (pk).

" Each of the equivalent classes defined above is obtained

from a different initial marking in the subnetwork N. Therefore,

* if we define a marking function MN, which the marking M

restricted to the set of places P1 of subnetwork .1, then the sets

in each one of the classes Sei, il,..,m, become

indistinguishable, and therefore, each of the above classes

r reduces to a set of markings defined on ?I and obtained from an

initial marking MNIi, i=l,..,m. These initial markings are

introduced into the subnetwork by the firing of one or more

" transitions in Tin (the set of input transitions of N) which

modify the markings of places in Pin(the set of input places of

-; N) .

For a recurrent subnetwork, and for each initial marking

MNli, the marking sequence in the subnetwork is isomorphic to an

ergodic discrete parameter Markov chain, and the steady state

probability distribution of the number cf tokens in each place

can be obtained H owever, in order to analyze a subnetwork in

isolation of the res" of the network, the following locality

condition must be satisfied.

Definition 9 (locality): Tor a subnetwork. N, if the probabilit-

of firing a transition in N is dependent only on the local

*......
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markings of N, then N is said to satisfy the locality condition

Definition 1.0 (conservation): for a subnetwork N, and for any

initial marking MNtli of N, if the total number of tokens in MNIi

is equal to the total number of tokens in any marking that

- enables an output transition in Tout, N is said to satisfy the

conservation condition.

The above definition is merely stating that a conservative

16 subnetwork is a one which does not create (or eleminate) tokens

to (from) the rest of the network.

The aggregation of a subnetwork with immediate transitions is

given in the following theorm,

Theorem 2: ?or live and bounded restricted GSPN B=(P,T,r,O) with

an initial marking MI and a set of transition firing rates R

I- (defined for timed transitions), if there exists a sunbetwork N

.= (.,Tl,It,Ol) as defined in definition 4, such that,

i) The set of input places Pin contains only one element, and
qM

the set of output transitions Tout consists of timed transitions,

ii) The subnetwork is recurrent and satisfies the locality and

conservation conditions,

. Then, an aggregated network '('T'' with a set of

transition rates R' is obtained by substituting the subnetwork N"

by one place pa, such that,

P' =(P-l~U (pal ,T' ( T-Tl},

I' (pi,'tj) = t(pitj), 0' (tj,oi) = t(tj,pi)

Spi P-l and t- j T IT, and

I' (pa, ti) (pj,ti) , 0' (ti,pa) = 0(ti,pj)

r1 pj ?I and t i T-T .

L'].' '."'/ ',-.-.. ".*.... . . . -
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And if ri is the rate of an output transition tiE Tout of the

subnetwork i.e., I(pk,ti)al for some pk-Pl, then the rate of
such a transition in the aggregated network becomes marking

Sdependent and is given by,

r'i(j) u ri . Pi(j) , where j is the number of tokens in pa

at the current marking, and

Pi(j) • Pr[ of finding at least one token in place pk of the

subnetwork/given j].

These probabilities are obtained by solving the subnetwork N in

S isolation for the steady state probabilities for each possible

value of j which defines the initial marking for N. The rates

of transitions in (T-Tl-Tout} remain unchanged, i.e., for any

ti (T-Tl-Tout}, ri' a ri.

Ptoof: We prove the above theorem, using the theory described in

the previous Chapter, by showing that the above aggregation is

actually a state aggregation of the process that describes the

stochastic behaviour of the GSPN.

Assuming for simplicity that there exist no other immediate

transitions in the GSPN (other than the ones in N), then the

partition defined in definition 6 of the reachability set S into

the subsets SI and S2 is precisely the partition of S defined in

equation (5.3.1) into ergodic classes at zero of the SOMP that

describes the behaviour of the GSPN. Where Sl contains k

markings, and S2 is further partitioned into i. ergodic classes

S2i,ial,...,l (since N is a recurrent subnetwork). The mat-rices

k' and K'' of equation (5.3.2) are

- - -.
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S21 1+ . . .
S22 1+ W2T

K' " . , and K" a wiT
S21 L+

Where w i as before is the steady state probability vector of a

1Markov chain with state space S2i. The trapping probability

vectors do not appear here since there is no evanescent states.

However, the subsets S2ij, j=l,...,r , that belong to the same

~ equivalent class Sei as defined in definition 6 , will have the

same probability vector w i , which is obtained by solving the ,.:

subnetwork N in isolation with an initial marking of i tokens in

W its input place.

The rate transition matrix A' of the aggregated process,

given in equation (5.3.3), is now shown to be the same as the

rate transition matrix of the aggragated network 3'. Figure 6.2

shows a transition diagram between the various subsets of S.

~ Where rini is the transition firing rate of a transition in Tin

enabled by a marking in S1, rl is the rate of a transition in (T-

TI-Tin-Tout} enabled by all markings in S21, rin is the rate of a

transition in Tin enabled by all markings in S21, and rout is the

rate of a transition in Tout enabled by a marking in S21. The

matrices A",B",C",and 0" in equation (5.3.3) are,

rn
.:' "

.- S.:

-' *m.**.~*.**~ ** ,**~U- * .::. -'• :-;-:%.%
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AnU r ini Bi r in i

LI

S21 S22 S2r+1

-(rl+rin) 1 rin
S21 -(rl+rin) r. in

C" * rout D" * -(rl+rin+rout) r. rin

Then, the kx(s-1) martix B"K' (where s=k+l) will have the same

nonzero elememts in B". And the matrices K"C" and K"D"K' are

given by,

i1 2 r+1

I rout.wli -(rout.wli rl+rin) r rin
2

VIC" I I=

-..

L

Clearly the only elements affected by the aggregation are the

rates oa the output transitions (%ransitions in To). In the

general case, however, when there is more than one marking in an

ergodic class that enables an output transition, the transition

rate is multiplied by the sum of the probabilities of such

r markings. Which can be expressed as the probability of finding at ma
least one token in the input place of such output transition. -

- -• * o "°"{ "*--'.
"

#.w .• - .. . .- ~. . ....... ... . ... ... . ,"
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The above theorem defines an aggregation operation on a GSPN.

The importance of this theorem for the approximate aggregation of

SPNs will be demonstrated in the next Chapter.

The reduction operation described in the begining of this

-chapter can be generalized for a class of reducible subnetworks

defined as follows,

Definition 11: A subnetwork N, defined in def. 4, is said to be

reducible if, for each pi e Pout, there exist no transition

tj 6 Ti, such that l1(pi,tj) a 1. Therefore, there exist

.. markings in each S2i, itl,..l, that only enable transitions in

Tout.

The reduction operation of a reducible subnetwork is given in

U the following proposition.

Prooosition 1: for a live and bounded restricted GSPN

B - (P,T,I,O), with an initial marking MI, reachability set S,

and a set of transition firing rates R, if there exist a

reducible subnetwork 4 (Pl,Tl,Il,Ol) as defined above, such

"f that,

i) the set of input-output transitions Tin U Tout consists of

timed transitions, and for each ti E Tin (ti e Tout), there

exists only one place Pj i- ?in (pj C- Pout) such that,

O(ti,pj) a I (I(pj,ti) a 1), and

ii) N satisfies the locality and conservation conditions.

Shen, a reduced network B- (P',T',0,) is obtained by

... replacing %1, except fo: its places in Pout, by a set of timed

transitions Ta such that,

r . - (P-PI) U Pout, ?' - (T-Tl1 U Ta,

* *.'w.p k ". .*. 4 '..' .'* ". . *'- . . . "• . " " -, .* - ." " - " " " " " ",'"
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for all tj E (T-T1I,

1' (pitj) U I(pi,tj) , 0'(tjpi).u O(tjpi),Y pi (P-Ph},

t'(pi,tj) a I(pitj), V pi C Pout,

for each ti E Tin, and for Pout = (pol,po2,..,pox}, define new

' transitions til,ti2,..,ti(x-l) C- Ta such that

O' (tipol) I , 0'(til,po2) I , O'(ti2,po3) = ..... ,and

0'(ti(x-l),pox) a 1. Also

0 O'(tis,pr) 0 0(tipr), I'(pr,tis) I t(pr,tis) ,, pr - (p-P},

s * L,..., (x-l)

S(each ti 6 Tin is connected to the first place in Pout, and for

*- each ti, (x-l) transitions, tis, s-l,...,(x-l), are defined in Ta

that have the same input and output places in (P- 2) as ti. Each

tis also has po(s+l) 6 Pout as an output place. Ta is the set of

" all transitions tis, sal,...,(x-L), defined for each ti).

Also the set R' is defined as follows,

for each timed transition tk 6 (T-Tl-Tin}, r'k *rk, and

for each ti Tin and its corresponding tis, s-l,...,x-l, in Ta,

r' 1 ri . Pi(1), r'is a ri . Pi(s+l) for s 1 I,....,x-l,

where Pi(j), j a l,...,x, are the trappping probabili ties of a

token in the output place of ti in the set Pin to each one of the

places in Pout, respectively.

Proof: we prove the above proposition, using again the theory

described in the previous chapter, by showing that the above

reduction operation corresponds to neglecting evanescent states in

the process that describe the behaviour of the GSPN.

In figure 6.3(a), let ti be a transition in Tin with rate ri.

Place pj is a place in Pin such that 0(ti,pj) 6 i. The set of
: :"' ' '"" ~~~ ~ ~ ~ ~ ~ I The set of"""'" """•" %•%°""•..
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: places (polpo2,...pox) is the set of output places Pout. And

roi, i-,,...,x, are the rates of output transitions in Tout.

& Assuming for simplicity that there exist no other immediate

•-transitions in the GSPN (other than the ones in N). Let Mil be a

marking that enables ti, SN ,, {Mjl,Mj2, ...,Mjk) be the set of

: markings that enable transition in TI, and the set SO b

(Mol,Mo2,..,Mom) be t-he set of marking with at least one token in

in any one of the places in Pout. Considering for simplicity

markings with only one token in any one of the places of figure

6.3 (a), and let MjI be the marking in SN with one token in pj.

Then the blocks VN and UN of matrices U and V that correspond to

t he above sets of markings are given by,

Mil Mol Mo2 . . Mox
Mi I
Mol.
Mo 2

VN = Mox __
Mjl 0 PiFl) . Ti . ix)
Mj2 0 P2(l) . . . P2(x)

Mjk 0 Pk(l) . . . Pk(x)

Mil Mol Mo2 . . Mox MJl Mj2 . Mik

Lo]. I "
UN MO2 I B

. I

Mox L
where Pi(s) is the trappi.ng probability from Mjl, and Pm(s) is

the trapping probability from Mjl, 1 - 2,..,k, to Mos, s -

-.,...,x. Also the corresponding block AIN of Al is,

rm

"-.--'- -. -- ,-2-" "-' * *"' -... . . . . .. . . . . . .



Mil Mol . Max Mjl Mk
Mil -ri ri
Mol -rol

A'N Mox -rox
Mjl I

-. "

* Mj k

The corresponding block AIN of A' is, therefore, given by,

Mil. -ri ri.Pi(l) ri.Pi(2) **ri.Pi(xc)

Mal -rol
Mo2 -ro2

A IS

Mox -rox

*Clearly the the rate ri of the input transition is mutiplied

by the trapping probabilities from Mjl only to markings that

belong to 30. Figure 6.3(b) shows the reduction operation which

produces the same matrix AIN.#

Example: Consider the GSPN in figure 6.4(a), the subnetwork of

• immediate transitions consists of reducible and recurrent parts.

Using theorem I, the recurrent part can be aggregated first to

places pal and pa2. And the rates of transitions t6 and t7 are

'- multiplied by the appropriate probabilities. Then using

proposition 1, a reduction operation can be done ;on the remaining

reducible subnetwork as shown in figure 6.4(b). Where Pj (k) is

the trapping probability from a token in pij to pak, j,kal,2.

Ir:a -

-'- **. ,~* I
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CHAPTER 7
N

APPROXIMATE AGGREGATION OF SPNs

7.1. Overview

In this chapter the analysis of SPNs by approximate

aggragation and lumping is considered. in section 7.2, the

approximate hierarchical aggregation of SPNs is demonstrated by

several examples. And in section 7.3, the approximate lumping

*i parallel transitions in a SPN is considered.

7.2 Hierarchical Aggregation of SPNs

fThe analysis of SPNs with transition rates of different

orders of magnitude can be greatly simplified using approximate

aggregation techniques. In this section, the analysis of such

SPNs will be considered. And we demonstrate by several examples

* that the analysis of singularly perturbed SPNs can be reduced to

,he analysis of that- of a hierarchical sequence of subnetworks,

each of which is valid at a certain time scale. Since the time

• " behaviour of a SPN is isomorphic to a continuous time MC, the

hierarchical aggregation of SPNs is equivalent to that of MCs

described in chapter 4. However, as was the case for queuing

networks, such aggregation at the SPNs level is much more

advantageous than the aggregation of the correspoding MC when the

state space is very large. This is because at the SPN level we

are dealing with the aggregation of subnetworks, whereas at the

MC level we aggregate groups of large number of states.

The exact aggregation, defined in the previous chapter for

subnetworks consisting of immediate transitions is a GSPN, can be

employed for subnetworks consisting of fast transitions in an

: -,'.-'v..,- .,-.-.-.. ...... .,. .- , .-. . .... ..--
-- " - ", "~ ..-* .' , ,,.- . " . - "*.* .** *." -- ., * - ." .' .' ', - .' " . ..- , ' - , . .
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SPN. However, the aggregation is approximate since fast

- transitions have very large, yet finite, firing rates compared to

' slow transitions. The following example illustrates the above

concept.

-Examole 7.1: consider the SP4 shown in figure 7.1, where

,rl,r2,r3, and r4 are large compared to r5 and r6. Considering

large transitions only with input-output places, the SPN is

t'°decomposed into the recurrent subnetworks NI anf N2 shown in

- figure 7.2(a). Using the theory developed in the previous

chapter, these subnetworks can be aggregated, and an aggregated

e SPN with slow transitions can be obtained as shown in figure

:; 7.2(b). Where r'5(i) and r'6(j) are state dependent rates given

r'5(i) = r5 P1(i) , and r'6(j) = -6 P2(j), where

Indinc a- east one token in place pof N.4 when

there are i tokens in place pall, and
U

P2(j) [rio4 finding at least one token in place p4 of 42 when

. theze are j tokens in ca2l.

The above robabilicies are obtained by solving subnetworks

NI and 'N2 for all -ossible markings of the aggregated SPN, then

~P1(1) - /(r1 r2) , P2(1) =-r3/(r3+r4),

.=P1(2) = :1 r2/(rl 2 *.rLr2 22, P2(2) = r3 r4/(r32-r3r4+r42)

The rate :ransirion matrix ' of che aggregated SoN -is given

by,

.A
11 I--'5(2) r'3(2) 3 -

;-'. r '6(L) - (r' 52;.>r"-'G(l)) r'3(i)|

o3 r ' 6 ( 2 )- '6 2

hi c n can be soled f r -.he Stead'state p-:bab es of the
-7-
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- markings of the aggregated SPN.

To show that the above is equivalent to the approxi.mate

" aggregation of the isomorphic MC of the SPN in figure 7.1, the

e reachability set of this SPN and the correspoding rate transition

matrix are given by,

pl p2 p3 p4

Ml 1 0 1 0

M2 . 0 0 1-

M3 0 1 1 0

4 -, 3. 0 3. iv

M5 2 0 J 9

M6 1 1 0 0

* M7 3 2 0 0

Mg 0 0 2 0

Mi13 0 0 a 2

'M -xI :4 rl 0 0 0 0 3 0 .

M2 r -x2 3 :1 r6 a 3 J 3 3

M3 r2 0 -x3 r4 0 0 0 r5 3 0

M4 3 r2 r3 -x4 0 :6 0 :5 a 0

M5 a 3 0 3 -rl :2 '3 3 0

M6 35 3 3 :2 -x6 : 3 3.

Z7 3 3 :5 3 0 r2 -:7 3-3a

-0 a 3 a -x8 :4 3

M9 r6 3 a 3 a :3 -x9 r4

MIJ '3 :6 3 3 3 3 3 3 r3 -x I"

* here x4i is := su um :of t" 'emen:s 'n :w.
. . ...* * " - -. - m n n : w i = , .

• . . < • . .o. .... . .. '%
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Since the rl,:2,r3,and r4 >> r5 and r6, the above matrix can

be written as,

A a A(p) a A + p Al, where p = r5 + r6 , is the maximum

i degree of coupling between aggregates [COUR 77], and

AO - A(O), is obtained by letting r5 and r6 equal 0 in A. Then

from theorem 1 of chapter 4, and since rank A(p) > rank AO (i.e,

- the process is singularly perturbed), the steady state transition

- probability matrix Pr of the MC is given by, -

Pr = limt..-. exptA t} U exp(A" p t} V, where

Z = limt ex pA0 t = V.U is the canonical decomposition of Z,

- and p A" z U p Al V , is the rate transition matrix of the

.- aggregated process. It can be easily shown that this matrix is

the rate transition matrix A' of the aggregated SPM of figure

7.2(b).

The approximate aggregation of the SPNJ of figure 7.1 produces

a hierarchical decomposition of the SPN at two time scales. At

the fast time scale t the S?4 reduces to subnetworks Nl and N2 of

figure 7.2(a). And at the slow time scale t/p, the aggregated SPN

of figure 7.2(b) is obtained. The current marking of the

aggregated SPN at the higher level of the hierarchy delermines

the number of tokens in the subnetworks at the lower level. Which

are solved to determine the rates of transitions at the higher

level. Such hierarchical decomposition is symptomatic of

singularly perturbed SPNs defined as follows,

Definition i: a SPI with fast and slow transitions is said to be

singularly perturbed, if and only if the corzespondin MC is

singularly perturbed, i.e., if rank A > rank AO, where A is the

rate transition mat:ix and AJ is the matrix A when all slow

... , - - ,. ,.,, .. .... , - . .-... . ..' .-_,..- .4.
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transitions are set to zero.

In the rest of this chapter the analysis wil be focused on

k' irreducible SPNs defined as follows,

Definition 2: a SPN = (?,T,1,O), with an initial marking MI and a

reachability set S, is said to be irreducible if it is live and

recurrent, i.e., if for any ti f T and for all Mj C S, there

exists a transition firing sequence from Mj in which ti fires.

And if for any Mj,Mk 5, Mk is reachable from Mj.

The recurrence of markings and the liveness issues are

related, however they are not equivalent. it is clear that a

recurrent ?N is not necessarily live, and not all live and

bounded PNs are recurrent. Molloy CMOLS1] proved that any live

and bounded PN, with a reachability set S, has a unique subset of

rZ recurrent markings S' C S. which entirely describes the steady

state behaviour of the S?N. In the above definition of an

, irreducible S4.I S' S.

The following proposition characterizes singularly -erturbed

SPNS.

"" Pooositicn 7.1: an irreducible SPN. with fast and slow transitions,

and a reachability set S, is singularly perturbed if and only if

one of the following conditions is satisfied,

i) There exists more than one marking in S which enable only

slow transitions,

ii) There exist a: least two disjoint :ecu:rent subne:wor:'s

consisiting of fast transitions, or

ii') There exist at least one marking as defined in i), and

one subnetwork as defined in ii).
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i Proof: from definition 1, a SPN is singularly perturbed if and

only if, in its corresponding MC rank A > rank A, or

equivalently nul.A < nul.AO. Since for an irreducible SPN

nul.A-l, then

a) if condition i) is satisfied, then clearly nul.AO > I (there

exist more than one row of zeros in AO).

b) if condition ii) is satisfied, then each subnetwork will

produce at least one block diagonal matrix in AO, the nulity of

which will be equal to 1. And therefore nul.A3 > 1.

c) clearly from the above if condition iii) is satisfied, then

again nul.AO > 1.

We prove the necessity of the above conditions by

U contradiction as follows. Suppose that none of the above
conditions are satisfied, yet nul.AO > 1. Then considering only

fast transitions, there exist more than one ergodic classes of
IV

C- markings Ei,il,2,..,. Let E be the set of all ergodic classes.

if any Ei E contains more than one marking, then these markings

must be reachable from each other by fast transitions

(recurrent). But since condition ii) is not satisfied, then there

exist at most one Ei E E with more than one marking. And each of.

the remaining classes consists of a single marking. Now, since

conditions ii) and iii) are not satisfied, then these single

markings do not enable any slow transition. And no other

transition in the SN is enabled. 'Then nul.A > 1, i.e. the SPN is

is not live which is a contradiction. '
-- : :-....

As mentioned before, the hierarchical decomposition of at

- different time scales of perturbed SPNs is symptomatic of

* . -C* * * -

- -.- ° - °° °° -C. .*. . . . . . . -• . . . .

- :L . .z.:, .=_% . __. . . z . ... .. .-.- -.. ... ..-.- - . . . .. . - . ..
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singular perturbation. The analysis of regularly perturbed SPNs

reduces approximately to the analysis of the network under fast

,, transitions only. We illustratees the above concepts by the

1. following examples.

Examole 7.2: Consider the SPN shown in figure 7.3(a), where the

rates of slow transitions are modeled by a small parameter p<<l.

.. The reachability set is given by
-p.

pl p2 p3 p4

|M2 0 i 0 0

M3 3 a 1 0

M4 0 0 0 1

F rom proposition 7.1, this subnetwork is singularly perturbed

since marking Ml amd M4 enable only slow transitions. At the fast

time scale, the SPN reduces to the subnetwork consisting of

transitions t3 and tS, and their set of input output places PI a

tpl,p2,p3}. However, as shown in figure 7.3(b), slow transitions

1l and t4, with input output places in P1, are also included in

the subnetwork. Although these slow transitions can be neglected

at the fast time scale, their inclusion here is for improving the

C acurracy of the approximation. This subnevwork is now recurrent

and can be aggregated into one place pal. Figure 7.3(b) shows the

aggregated SPHI at the slow time scale consisting of slow

transitions only. This SPN can be solved for the probabilities of

the markings Ml' and M2' defined as follows, j
LI

l: _ , ,-.-.
-

'.----. ' ' , .'_-,..-.-,. -. , -. ,, . . . . • _ . . . .
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pal p3

M2' I . p. _

Thus P(MI') - 2/3 , and P(M2') 1 1/3 , and from the subnetwork in 'V

figure 7.3(b),

P(Ml) a P(M1') . i/(lp+p 2 ) , P(M2) a P(M1') . p/(14p~p2) ,

P(M3) a P(Ml') . p2/(1+p+p 2 ) , and P(M4) a P(M4')

I: tt can be easily seen that without the inclusion of slow

tramsiticns ti and t4 in the fast time scale,the probabilities

P(M2) and ? (M3) would be zeros.

"- Examole 7.3: Consider the SPN shown in figure 7.4(a), where p <<

I. Again this SPN is singularly perturbed, since there exist two

. recurrent subnetworks NI and N2 with fast transitions. Where N1 •

fp3,p2,t3,t4} and N2 - (p4,p5,t6,t7}. At the fast time scale t,

the S-%N. is decomposed into the subnetworks shown in figure

7.4(b). Where again the slow transition t5 is included since its

input and output places p2 and pl belong to the set of input

output places of fast transitions in one of the subnetworks in

figure 7.4(b). The inclusion of this transition in this example

is crucial since the probability of finding a token in p1 would

be zero otherwise. And since pl is an output place of this

subnetwo.k to the rest of the network, the rate of the output

transition tl depends on the above probability.

At the slow time scale t/p the aggregated SPN shown in figure

7.4(c) is obtained. Where the subnetwo:ks in figure 7.4(b) are

aggregated into places pall and pal2. This SPN is also singularly

" perturbed. Since it consists o. slow and fast transitions ( p and
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p 2 ). And there exists a recurrent subnetwork of fast transitions

[pal2,p6,tS,t9}, and a marking that only enables the slow

transition Ul. Therefore at time scale t/p it reduces to the

subnetwork of fast transitions shown in figure 7.4(d). and at

time scale t/p 2, the aggregated SPN of slow transition shown in

figure 7.4(e) is obtained. Therefore, the networks in figures

S7.4(b,d,e) are the time scale decomposition of of the SPN4 in

figure 7.4(a) at t, t/p, and t/p 2 respectively.

7.2 Approximate Lumping
0%..

In this section, another method that reduces the analysis

complexity of SPIS will be discussed. Since SPNs are isomorphic

to MCs, state lumping defined for MCs can be implemented on

subnetworks of SPNS. We first review the notion of "lumpability"

[KEM 67, COU 77, DEL 84] of an i.reducible finite state Markov

- process (TSMP), and demonstrate by an example the application of

this notion to SPNs.

Let x t be a discrete parameter homogenous MC, with state

space Z'fl,2,...,n}, and a transition probability matrix P. Let

(QQ1.,Q)be a partition of the set E. Each subset

Q; i=l,2,....,R can be considered as a state of a new process.

Let s denote the state occupied by this new process at time t.

The probability of a transition occuring at time t from state Qi

to state Qj, PQiQj(t), is given by,
P9 QiQj r st-Qj/ st_=- 2=Qk, ...,sgzQ,).

The original MC is thus reduced to a stochastic process with

fewer states. The new process is called a lumped process, and Qi

a lumped state.
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The lumped process is again a homogenous MC only if it is

Ptime independant and depends only on st_., 
i.e.

P'QiQj(t) - Pr( st=Qj/ st-inoli I
- QiQj t>0 (7.2.1)

Kemeny and Snell [KEM 671 qualify xt as being lumpable if

,. equation (7.2.1) is true for every possible initial state. Defining

as the probability of moving from state i to set Qj, then the MC

is lumpable with respect to the partition {QlQ2,.*...QR} if and

only if all the PiQj have the same value for every i& 0i, and for

any given Qj Qi.

Similarly, for a continuous time, homogeneous FSMP

(x(t),t>01, with a state space E, and a rate transition matrix A.

Then x(t) is lumpable with respect to a partition V-

.QR}, if and only if

AU SUA' (7.2.2)

where U is (n,R) partition matrix, whose (i,Qj) entry is ,.

t UiQj =Iif iEC-Qj

a 0 otherwise

A' is the rate transition matrix of the lumped process fx'(t),

t>G1. Equation (7.2.2) can be written as

ke-k aik s a'QjQk , Qj, k=l,2,....R. '.

That is the rate of going from j4. Q; to grou? Qk depends only on

* j and is independant o! i.

As an example,conside: the MC shown in figure 7.5(a).

f a35 -a4 5 - a , then a Lumped MC can be obtained as shown in

* .** *.. -
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- figure 7.5(b), where

a2 [3,4} a2, 3  a 2 , 4 , and

" a{3,41, 5  ab..-
-

We demonstrate the application of the above concept to SPNs by

the following example.

Consider the SPN shown in figure 7.6(a), the reachability set of

which is given by,

M 3  0]

S>4 001 10M

* >1 00M1

-J Let us investigate the probability of lumping the subnetwork
'.4

(p2,P3,t2,t 3 } consisting of the parallel transition t2 and t3

together with their input output places, to obtain the lumped SPH

. shown in figure7.6(b), the reachability set of which is

.'.. ! 1 0 0

22-

03.
M'2 3 00 'V..

Clearly, we are investigating the lumping of marking kM2, M3, and

M4 into M'2. Let x be a random variable representing the firing

time of transition t' 2 " I: can be easily seen that

x - max(xi,x 2 ) , where :c3 and :.2 are r.v.s representing the

firing times of transitions t1 and t 2 respectively. Since x, and

x2 are independant and exponentially distribu:ed withrates r, and

,' ', " % % % '. '. ',''"'. '. ". ' '% ' ' . " ", °. ." , -. . '. ''' " "' "'' ". . ' ". - "% "" ' , , ,",".'. . - .'. "." -.

. ' ' .- . .-. ,,,: . ','s, . - .- ,. .-.- .. .€*2...• .. , .'- . ... ..- J- ... .. P ,' --
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I

. r2  , then,
P lx<. t) -P Ix _i t). - P x2it

(-e -r2t ) .(l-e-r3 t )

Therefore, even if rl =r2, x is not exponentially distributed,

_. and since by the definition of a SPN, every transition must be

associated with an exponentially distributed firing time, the

K lumped network in figure 7.6(b) is not defined. However, we

can approximate the distribution of x by an exponential distribution

with rate r, such that the folloing integral is minimized,

~~M int a [ (I- e -E2 t ) (I-e'r3t)'(I-e-rt)]2 dt -.

,r2,,r3 > 0

S Then 2r2 (r+r 3 ) 2(r2 r3 +r) 2 + 2r2 (rr 2 ) 22r2 (r+r 3 )+r2
2 ]"

1/2 (r+r2 ) 2 (r+r3) 2 (rr 2+r3) 2u0

which can be solved iteratively for r.

Let rI =r2 =r3 =I, r4 =00 (i.e. t4 is an immediate transition)

Then, from the above, r = 0.649. Solving the lumped SPS for the

steady state probabilities of its marking, we get

P(M' ) x 0.394 , P(M' 2 ) a 0.606 , (?(M' 3) =0)

And solving the original SPN
P(Mi) 0 0.4 , P(M2 )?P(M')+P(M4 ) 0.6

?or CI =1, t2 =2, r3" 3, r4- 4, then r * 1.546 and

P(M'1 ) =0.5271 , P(M' 2 ) =0.341, P(M' 3)= 0.1317, P(Ml)=.53J9,

P(M2) .2(M3 )+P(M 4 )=0.336, .'M5 )= 0.1327, error 0.7%

if the transition rates are state (Marking) dependant, then

the above will not hold, since x1 and x2 are no longer

*9 independant. For this case, let us Consider the !,mped S? shown
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in figure 7.7 ,where the subnetwork of parallel transitions t2

,-Ind t3 are lumped into a subnetwork consisting of the two serial

.fransi tions t'2 and t'3. The reachability set is given by,

'i 4 0 0 0 1

in this case, marking M3 and M4 were lumped into M'3. Therefore,

Sro 2r= 2(2) +r3(2)

where ri(2 ) ;i=2,3 ,are the transition rates of t2 and t 3 at

"marking IM2 -

N ow let x be a r.v. representing the f62iring time of

transition t' 3 , then

?(x(t)*P(xlt)r 3 (2)/r 2 (2)4r 3 (2)1+?(x 2 < t)- 2 (2)/tr2(2) -r3 (2)]

-1-r 3 (2) er2 (3) I/r2 (2) +t 3 (2) 1

-r 2 (2)e-' 3 (4 )'/r()r()

which reduces to the exponential distr-ibution in two cases ;case

when -2=r3 and case 2 when either z2 Or :3 tends to infinity.

Define r'3 as the mean of. the albove distrib.ution, then,

yApproximating the ab-ove distributio-n -wdith a n exponential

.I,.
d' ist i 0u ic 14 th:t :-,tente.-, Nca C O',e

L'et = 2 3(2) 2, :2(3) =6, :3(2) =2, :3(4) = :4(4)

Then r'i ;5 and , hte 2 3

Then ?(:1 ) -0.-3581 ?(M'I,)a..l4J2.7, 9=

aexact so2.utionis,

, .



1.41

p(.M )=0.053 (M2-g.1116 (M3+?(M )=O-528

an o 9.1 2 2 - , z.)3 o , t () 6 3 4 ' '7

~ p .7 . 1 4 2 8

-Thenl t 2 -1i t'30'
4 2

p- )9.87 ,,PM 3 . 011154

adthe exact sol.utionl is

dmP(M 1)=0.
8 0 6 4 , P(m2 )-.0896

4 1 , M)?M).12 .%ert

LN



CHAPTER 8

OTHER APPLICATIONS

8.1 Overview U
In this chapter two other applications of GSPNs as an

T: analytical modeling tool will be considered. In section 2,

analytical models for systems Reliability and Maintainablity

6 (R&M) are considered. In section 3, a model for systems fault

- diagnosis is considered.

8.2 Modeling Systems Reliability and Maintainability

The development of cost-effective analytical models for

complex systems R & M has been an active area of research [DOL

83, FLE 84a, 84b, 85]. Generally speaking, the model can be

defined on the basis of the following information : system

structure, maintenance description, module or component data. A

complex system can often be divided into subsystems and modules.

A module is a replicable subset of a system chosen to be modeled
6-a

as a unit, on which system design, input data and maintenance
policies are based. Subsystems are sets of dependant modules

which are redundant, or with interdependant maintenance strategy.

Subsystems are usually defined to be independant and connected in

series. Thus a failure of a subsystem would cause system failure.

Maintenance description includes facilities, space modules, test

equipment, and maintenance policies such as inspection,

replacements, and repair procedures. Module data includes failu.e

rates, repair rates, fraction of faults detected, f:action of

faults isolated, and false alarm rate.

.. .... =' " a.. - * * '- " . . ' -; . .,JP - . ' . -" ."*. . : ' •"• . - . . .
'" m-[ b d m 

"
_rf"/"t .n2 ' '-
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The authorsin [FLE 84b] appeared to be the first ones to

develop a MC model which charactarizes all key elements insystem

R & M analysis. The state of the MC chain model is defined by the

N number of operational, or failed modules and the maintenance

actions in progress. Even though a MC can be constructed for each

subsystem, the model becomes intractable for complex systems due

" "to state space explosion. In this section we consider the use of

GSPNs for modeling systems R S M. GSPNs allow the activities to

be modeled at a high. level of abstraction. in other words, GSPNs

L provide a more detailed, yet simpler, description of system

activities. By detecting activities with duration of different

orders of magnitude, approximate aggregated models can de

obtained. This aggregation further reduces the complexity of the

analysis. The above concept is demonstrated by the following

exampale.

Example 8.l:Consider a system which consists of several redundant

modules. A built-in testing (BIT) unit monitors the operational

status of all modules. A module that fails and its failure is

covered , i.e. detected and isolated, by the BIT, is removed from

the system and sent to the shop for repair. The removal is

t considered as a maintenance action at the organizational ("0")

level [F'ZL 84b]. A faied module that was not immediatly detected

will produce an e:ror after some time. The system wIll then be

inspected and the failed module will be removed and sent to the

shop for repair. The inspection and the removal of the module is

considered as another maintenance action at the "0" level. A

fault that was detected but could not be isolated causes a system

.....".."...._....................-.-,".-7...
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failure. In this case, all modules are sent to the shop for

repair. The input parameters needed by the model are summarized
I as follows:

*m i  No. of modules 2

mu - module failure rate 10- 5 failures/hr.

i. FA - false alarm rate varies

rl a mean time for "0" level inspect and remove 2 hrs.

r - mean time for "0" level remove lhr.

< r 3  mean time for repair 72 hrs.

d fraction of faults detected varies

1 fraction of faults isolated varies

. FD - mean time to detect an immediately undetected fault 100 hrs.

The above parameters are taken from an example given in (FEL

84b] for a mission computer in an air craft radar set. The false

alarm rate is defined as the rate at which the BIT detects a

fault while the system is fault-free. Operational data of some

systems show that often 50% of all maintenance actions are due to

false alarms. Figure 8.1 (a) shows a GSPH which models system &

M of the above example. The initial marking of the GSPN indicates

that there are two modules installed and active, no maintenance,

and the system is up. An important advantage of using the GSPN is

that the graphical complexity does not change with the increase

of the number of modules in the system. Note that the component

failure rate and false alarm rate are much smaller than detection

and repair rates. An aproximate aggregated GS?. can thus be

obtained (figure a.1(b)). in figure 8.1 (b), rl a (:-A-2Mu d) i,

r 2 mrl(i-l)/i, and r 3 " 2Mu(l-d). The basic assumption in the
. -.

-.. '.?,."- -- - ;"..' V- "-" --.- . -. -. " "-"
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V aggregated GSP.4 is that a false alarm of a second failure is not
posible with one failure. Such a model can then be analyzed to

obtain system unavailability, which is the probability of finding

a token in F, and the average number of maintenance action per

.million hours. The approximation was found to be accurate for

imperfect isolation (i<l).

Figure 8.2 shows the impact of false alarm on system

unavailability for differnt values of detection and isolation

factors. The false alarm is increased up to a value where 50% of

all maintenance actions are due to false alarms. It demonstrates

that the isolation factor plays a key role in the impact of false

alarm on unavailability. The higher the isolation factor is, the

lower is the impact of false alarm on unavailability. This is

because an alarm which could not be isolated causes a system

failure. The detection factor, on the other hand, does not seem

to have significant effect on the impact of false alarms.

However, the lower the value of d in a system with false alarms,

the lower is the unavailability. This is because an error caused

by an undetected fault requires an inspection which is assumed by

the model to detect any previously undetected faults. The above

phenomena can be seen more clearly from the GS.N model of figure

8.1(a). This also demonstratesthat the GSP.. model can facilitate

the study of system activities.

8.3 Modeling Fault Oiagnosis

In this section, a model f!r fault diagnosis (fault

isolation) wil be presented using SPNs. The model is defined by

..... ... ,. -, ,,,,, ? . ; p .. ) .. , .. *. . , , # . ... ,, ". . ' ., - '''
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topological and functional descriptions of the system (the number

Rof modules, connectivity description, and module functions),

%relative a priori module failure probabilities (PIP 84], and the

Sspecified normal range for each module I/O value. The concept is

-.described trough the following example.

:'Example 8.2: Consider a system which consists of three modules as

shown in Figure 8.3(a). The function of module I is such that an .1
abnormal input will still yield a normal output. Modules 2 and 3

are linear, i.e. a bad input causes a bad output. Figure 8.3(b)

shows a GSPN model for the fault diagnosis. For each input and

output of a module, two places, say yl and Y2, are assigned. The

* subscript I stands for a normal value while 2 stands for an

abnormal one.

Transitions between the input-output places of a module

represent data flow activities. Probabilities assigned to

conflicting transitions in each module are computed from the

relative a priori module failure probabilities, which is assumed

to be much less than one . A token in place 1, 2 or 3 indicates

that the corresponding module is bad. Given the measurments x ax,

L. and z -z 2 , the GSPN can be solved to determine the probability

that a certain module is faulty. As an example, suppose that a

priori failure probabilities of all modules are equal to 0.1. The

distributions oftokens in places 1, 2 and 3 are as follows: 100

with prob. 0.09, ll with prob. 0.G, 913 with prob. 3.81, and

- ll with prob. 9.09. Therefore, the above measurements lead to

the conclusion that module 2 is most likely faulty.

9. 4- ;. .4. *****~ * * **..*,4 & ~ * .*......
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The above model can be used as 
a design for testability (DFT)

model. In [BAL 841, some DPT models based on fault 
trees were

disCuSSed. The complexity of which 
is proportional to 2n, where n

is the number of modules. On the other hand, the complexitY Of

GSPN is linearly proportional to n. Also, local changes in the

-- system would require only corresponding 
local changes in the

model.

oZ.. i!4

.4.

-4

. -

¢4.4 
.



CHAPTER 9

CONCLUS IONS

The intent of this research was to develop analytical models

for parallel processing systems. Because of the nature of such

systems, the model has to handel such phenomena as parallel

* ' synchronous-asynchronous operations, sequential operations,

contention for multiple resources, and queuing. The models

* " previously developed, all of which are based on product form

queuing networks (PFQN), are restricted to a certain type of

L parallel operations or another, namely, synchronous or

asynchronous operations. We considered the generalized stochatic

Petri Nets (GSPNs) as an alternative modeling tool to model such

systems. Yet a GSPN model rapidly becomes intractable due to the

state space explosion. Therefore, a hierarchical model was

developed which utilizes both GSPNs and ??QNs. A GSPN was used to

model the system workload, which comprises such activities as

. sequential, and parallel synchronous-asynchronous operations. And

a PFQN was used to model contention and queuing for the system

resources.

In the second part of the dissertain #h nlyi f S6

was considered. A general method of analysis, based on

identifying an isomorphism between GSPNs and stochastically

discontinuous Markov processes, was developed. This method,

though was shown to be more general than previously proposed

methods, still needs the generation of the reachability set of -2

the GSPN. Which grows rapidly with the number of tokens in the .Z

initial marking and the structure o4 the GSPN. Therefore two

' ~ * *%



,%.techniques for reducing analysis complexity were developed.

The first technique deals with the decomposition of the

initial marking into several initial markings under which a

6*: simplified analysis of the CSPN can be obtained. For example, the

, examples given at the end of chapter 5 with several tokens

initially in pl can be analyzed first with only one token in pl

to determine the ergodic classes and transient markings under

immediate transitions, which then can be obtained for the general

case when there is more than one marking in pI. This technique
"-.1

can be applied to reduce the analysis complexity of a GSPN model

of the system workload when the multiprogramming level is high. :t

Thesecond technique is based on aggregation and reduction at

M the GSPN level. Where subnetworks of immediate transitions can be

aggregated or reduced. This reduces the structure complexity of

" GSPNs....

* Approximate analysis of SPNs by multiple time scale

decomposition and lumping were then considered. It was shown that

th e analysis of singularly perturbed SPNs, with transition firing

rates of different orders of magnitude, can be reduced to that of

a hierarchical sequence of aggregated subnetworks, each of which

is valid at a certain time scale. The Approximate lumping of S.t.s

was also considered, and an example of obtaining a lumped product

form SPN from a non-product form SPN was given.

Finally the application of G.SIs to model system.s
Reliability, Maintainability, and fault diagnosis was considered.

And it was shown than such models are much more easier to-

construct in a compact form, especially for systems with a large

;. *., . .-.-. V. -- '- ;*-i*.-.~
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number of redundant comaponents, than the existing Markov :hain

mode is.
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